Log in

Determination of the Residual Life of Rigid Road Pavements of Industrial Enterprises

Number of journal: 3-2024
Autors:

Bondarev B.A.,
Bondarev A.B.,
Yartsev V.P.,
Zhidkov V.K.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-71-75
УДК: 625.8

 

AbstractAbout AuthorsReferences
Еhe main problems of determining the residual life of rigid road pavement structures of industrial enterprises are considered. An analysis of existing methods for determining the durability and residual life of highways of both rigid and non-rigid types of construction on public roads was carried out. As a result of the research carried out on the territory of the enterprise, an algorithm was proposed for calculating the residual life of the highway structure, based on changes in the longitudinal evenness of the pavement, the presence of defects and damages on the surface of the roadway, compaction of asphalt concrete layers, as well as the actual and calculated intensity of traffic flow. The study of auto-road pavement elements was carried out using the “Trassa” mobile road laboratory, and the determination of the physical and mechanical characteristics of the materials was carried out in the laboratory using modern research methods.
B.A. BONDAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.B. BONDAREV1, Candidate of Sciences (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.P. YARTSEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.K. ZHIDKOV2, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30, Moskovskaya St., Lipetsk, 398055, Russian Federation)
2 Tambov State Technical University (106/5, room 2, Sovetskaya St., Tambov, 392000, Russian Federation)

1. Moiseenko R.P., Efimenko V.N. On assessing the durability of highways. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2019. No. 3, pp. 207–213. (In Russian). DOI: https://www.doi.org/10.31675/1607-1859-2019-21-3-207-213
2. Tiraturyan A.N. A mechanical and statistical method for estimating the residual resource of non-rigid road surfaces. Transportnye sooruzheniya. 2018. No. 4, p. 1. (In Russian). DOI: https://www.doi.org/10.15862/01SATS418
3. Bondarev B.A., Bondarev A.B., Borkov P.V., Shulepov S.K., Zhidkov V.K., Kopalin D.A. Analysis of defects and damage to materials in the structures of road coverings of industrial roads and ways to eliminate them. Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 70–74. (In Russian). DOI: https://www.doi.org/10.31659/0585-430X-2023-814-6-70-74
4. Dormidontova T.V., Simonyan A.S. Estimation of the modulus of elasticity of the pavement and its elements. Traditions and innovations in construction and architecture. Construction and Construction Technologies: Collection of articles of the 79th All-Russian Scientific and Technical Conference. Samara, April 18–22, 2022, pp. 242–247. (In Russian).
5. Konorev A.S., Dumenko V.A., Konoreva O.V. A method for increasing the accuracy of accounting for the impact of traffic flow on the structures of road clothes. Dorogi i mosty. 2020. No. 2 (44), pp. 145–159. (In Russian).
6. Elshami M.M.M., Tiraturyan A.N., Uglova E.V. Management of the life cycle of highways at the operational stage based on artificial neural network algorithms. Inzhenernyj vestnik Dona. 2022. No. 8 (92), pp. 282–292. (In Russian).
7. Uglova E.V., Konorev A.S., Konoreva O.V. Consideration of the impact of traffic flow when calculating road structures at the design stage and determining the residual life of road coverings at the operational stage. Internet-zhurnal Naukovedenie. 2012. No. 4 (13), pp. 220. (In Russian). http://naukovedenie.ru/index.php?p=issue-4-12
8. Klekovkina M.P., Bondareva E.D. Forecasting the life cycle of non-rigid type road clothes. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 5, pp. 61–65. (In Russian). DOI: https://www.doi.org/10.33622/0869-7019.2022.05.61-65
9. Korochkin A.V., Petrov K.M. Calculation of rigid pavement with asphalt concrete coating using software complexes. Stroitel’nye Materialy [Construction Materials]. 2013. No. 5, pp. 8–10. (In Russian).
10. Kostel’ov M.P. Why seal asphalt concrete above the minimum norm. Dorozhnaya tekhnika. 2016. No. 5, pp. 135–138.
11. Bobneva A.N. Accounting for the impact on road clothing of multi-axle vehicles with converged axles during the transportation of oversized and heavy loads. Innovacii i investicii. 2022. No. 11, pp. 269–271. (In Russian).
12. Zhemerikina A.A. Calculation of the pavement structure according to PNST 265-2018 and ODN 218.046-01. Materials of the 71st All-Russian (with international participation) scientific Conference of students and Young scientists. Petrozavodsk. 2019, pp. 238–241. (In Russian).
13. Sokolov N.S. One of the cases of strengthening the base of a deformed anti-landslide retaining wall. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 12, pp. 23–27. (In Russian). DOI: 10.31659/0044-4472-2021-12-23-27
14. Abramov B.M. Loads in the road industry. Days of science of students of Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletov: Collection of materials of scientific and practical conferences. Vladimir. 2023, pp. 1031–1037. (In Russian).

For citation: Bondarev B.A., Bondarev A.B., Yartsev V.P., Zhidkov V.K. Determination of the residual life of rigid road pavements of industrial enterprises. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 71–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-71-75

The Contact Angles of Quartz and Caustic Dolomite Powders after Mechano-Magnetic Treatment

Number of journal: 3-2024
Autors:

Ibragimov R.A.,
Korolev E.V.,
Bikaeva Yu.V.,
Larionov I.S.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-64-70
УДК: 535.561

 

AbstractAbout AuthorsReferences
The determination of the surface free energy (SFE) is currently achieved using an instrumental method, one of which is «sessile drop». The surface free energy of quartz and caustic dolomite powders was defined before and after mechano-magnetic activation in the Vortex layer device. Free surface energy was identified by the well-known models proposed by the Owens–Wendt–Rabel–Kaelble (OWRK) and Van Oss–Chaudhury–Good (VOCG). The determination of the surface free energy (SFE) based on the presented model provides a good convergence: due to experimental assumptions, the deviation in calculation results is 14–16%. It was shown that mechano-magnetic treatment increased the adhesion of quartz powder by 86% (from 73 to 136 J/m2) and caustic dolomite by 217% (from 884 to 2800 J/m2). The mechano-magnetic treatment of study materials can significantly improve the interaction of the liquid with solid. This is evident from comparison of two attributes: the amount of change of specific interphase surface energy of a solid at the boundary with the gas per to change of specific surface of the powder and the change in the cosine of contact wetting angle per to a change in specific surface of the powder. This means the first value that represents the intensity of the interaction between liquids and solids multiplу greater than an integral characteristic of the interaction at the boundary of three phases. Such changes in geometric characteristics and surface properties are effective factors in structure formation control, especially hydration hardening.
R.A. IBRAGIMOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering);
Yu.V. BIKAEVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.S. LARIONOV3, Engineer

1 Kazan State University of Architecture and Civil Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeiskaya Street, 190005, St. Petersburg, Russian Federation)
3 Kazan Federal University (18, bld. 1, Kremlevskaya street, Kazan, 420111, Russian Federation)

1. Сивальнева М.Н., Строкова В.В., Нелюбова В.В., Огурцова Ю.Н., Орехова Т.Н., Боцман Л.Н., Нецвет Д.Д. Методы оценки механоактивированного минерального сырья для композиционных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2023. № 9. С. 8–22. DOI: 10.34031/2071-7318-2023-8-9-8-22
1. Sivalneva M.N., Strokova V.V., Nelubova V.V., Ogurtsova Yu.N., Orekhova T.N., Botsman L.N., Netsvet D.D. Methods for assessing mechanically activated mineral raw materials for composite binders. Vestnik of the BSTU named after V.G. Shukhov. 2023. No. 9, pp. 8–22. DOI: 10.34031/2071-7318-2023-8-9-8-22 (In Russian).
2. Ибрагимов Р.А., Королев Е.В. Прочность композитов на основе модифицированного портландцемента, активированного в аппарате вихревого слоя // Промышленное и гражданское строительство. 2021. № 1. С. 35–41. DOI: 10.33622/0869-7019.2021.01.35-41
2. Ibragimov R.A., Korolev E.V. Strength of composites on portland cement modified with carbon nano-tubes and processed in a vortex layer apparatus. Promyshlennoe i grazhdanskoe stroitel’stvo. 2021. No. 1, pp. 35–41. (In Russian). DOI: 10.33622/0869-7019.2021.01.35-41
3. Головин Ю.И. Магнитопластичность твердых тел // Физика твердого тела. 2004. Т. 46. № 5. С. 769–803.
3. Golovin Yu.I. Magnetoplasticity of solids. Fizika tverdogo tela. 2004. Vol. 46, No. 5, pp. 769–803. (In Russian).
4. Ibragimov R.A., Korolev E.V. Influence of electromagnetic field on characteristics of crushed materials. Magazine of Civil Engineering. 2022. No. 6 (114). 11408. DOI: 10.34910/MCE.114.8
5. Королев Е.В. Перспективы развития строительного материаловедения // Academia. Архитекту-ра и строительство. 2020. № 3. С. 143–159. DOI: 10.22337/2077-9038-2020-3-143-159.
5. Korolev E.V. Prospects for the development of construction materials of science. Academia. Arkhitektura i stroitel’stvo. 2020. No. 3, pp. 143–159. (In Russian). DOI: 10.22337/2077-9038-2020-3-143-159
6. Нелюбова В.В., Строкова В.В., Данилов В.Е., Айзенштадт А.М. Комплексная оценка активности кремнеземсодержащего сырья как показателя эффективности механоактивации // Обогащение руд. 2022. № 2. С. 17–25. DOI: 10.17580/or.2022.02.03
6. Nelyubova V.V., Strokova V.V., Danilov V.E., Ayzenshtadt A.M. Comprehensive activity analysis of silica-containing raw materials for use in mechanical activation efficiency evaluations. Obogashcheniye rud. 2022. No. 2, pp. 17–25. (In Russian). DOI: 10.17580/or.2022.02.03
7. Королев Е.В., Гришина А.Н., Пустовгар А.П. Поверхностное натяжение в структурообразовании материалов. Значение, расчет и применение // Строительные материалы. 2017. № 1–2. С. 104–108.
7. Korolev E.V., Grishina A.N., Pustovgar A.P. Surface tension in structure formation of materials. Significance, calculation and application. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 104–108. (In Russian).
8. Старостина И.А., Стоянов О.В., Краус Э. Развитие методов смачивания для оценки состояния поверхности. Казань: Издательство КНИТУ, 2019. 140 с.
8. Starostina I.A., Stoyanov O.V., Kraus E. Razvitie metodov smachivaniya dlya otsenki sostoyaniya poverkhnosti [Evolution of wetting methods for surface assessment]. Kazan: KNRTU-KAI. 2019. 140 p.
9. Данилов В.Е., Королев Е.В., Айзенштадт А.М. Измерение краевых углов смачивания порошков методом «sessile drop» // Физика и химия обработки материалов. 2020. № 6. С. 75–82. DOI: 10.30791/0015-3214-2020-6-75-82
9. Danilov V.E., Korolev E.V., Ayzenshtadt A.M. Measurement of wetting angles for powders by sessile drop method. Fizika i khimiya obrabotki materialov. 2020. No. 6, pp. 75–82. (In Russian). DOI: 10.30791/0015-3214-2020-6-75-82
10. Айзенштадт А.М., Королев Е.В., Дроздюк Т.А., Данилов В.Е., Фролова М.А. Возможный подход к оценке дисперсионного взаимодействия в порошковых системах // Физика и химия обработки материалов. 2021. № 3. С. 40–48. DOI: 10.30791/0015-3214-2021-3-40-48
10. Ayzenshtadt A.M., Korolev E.V., Drozdyuk T.A., Danilov V.E., Frolova M.A. Possible approach to estimating the dispersion interaction in powder systems. Fizika i khimiya obrabotki materialov. 2021. No. 3, pp. 40–48. (In Russian). DOI: 10.30791/0015-3214-2021-3-40-48
11. Волков В.А. Коллоидная химия. Поверхностная энергия и дисперсные системы. СПб.: Лань, 2015. 627 с.
11. Volkov V.A. Kolloidnaya khimiya. Poverkhnostnaya energiya i dispersnye sistemy [Colloid chemistry. Surface energy and disperse system]. Saint Petersburg: Lan’. 2015. 627 p.
12. Данилов В.Е.,Королев Е.В., Айзенштадт А.М., Строкова В.В. Особенности расчета свободной энергии поверхности на основе модели межфазного взаимодействия Оунса–Вендта–Рабеля–Кьельбле // Строительные материалы. 2019. № 11. С. 66–72. DOI: 10.31659/0585-430X-2019-776-11-66-72
12. Danilov V.E., Korolev E.V., Ayzenshtadt A.M., Strokova V.V. Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens–Wendt–Rabel–Kaelble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-66-72
13. Li Y., Ma X., Chen Y., Kang X., Yang B. Superhydrophobicity mechanism and nanoscale profiling of PDMS-Modified kaolinite nanolayers via Ab Initio-MD simulation and atomic force microscopy study. Langmuir. 2023. Vol. 39 (24), pp. 8548–8558. DOI: 10.1021/acs.langmuir.3c00915
14. Kang X., Li Y., Ma X., Sun H. Fabrication and characterization of high performance superhydrophobic organosilane-coated fly ash composites with novel micro-nano-hierarchy roughness. Journal of Materials Science. 2022. Vol. 57 (29), pp. 13914–13927. DOI: 10.1007/s10853-022-07473-5
15. Zongcheng Yang, Jiangfan Chang, Xiaoyan He, Xiuqin Bai, Chengqing Yuan. Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application. Progress in Organic Coatings. 2023. Vol. 177, pp. 107458. DOI: 10.1016/j.porgcoat.2023.107458
16. Morgan J. Malm, Ganesan Narsimhan, Jozef L. Kokini. Effect of contact surface, plasticized and crosslinked zein films are cast on, on the distribution of dispersive and polar surface energy using the Van Oss method of deconvolution. Journal of Food Engineering. 2019. Vol. 263, pp. 262–271. DOI: 10.1016/j.jfoodeng.2019.07.001
17. Liling Jing, Pengfei Yang, Mark G. Moloney, Zhiliang Zhang, Yongqing Wang, Junying Li, Feng Ma, Jian Li. Synthesis and carbene-insertion preparation of hydrophobic natural polymer materials for rapid and efficient oil/water separation. Applied Surface Science. 2022 Vol. 581. 152394. DOI: 10.1016/j.apsusc.2021.152394
18. Fowkes F.M Attractive forces at interfaces. Industrial and Engineering Chemistry. 1964. Vol. 56, pp. 40–52.
19. Ибрагимов Р.А., Потапова Л.И., Королев Е.В. Исследование структурообразования активированного наномодифицированного цементного камня методом ИКспектроскопии // Известия КГАСУ. 2021. № 3 (57). С. 41–49. DOI: 10.52409/20731523_2021_3_41
19. Ibragimov R.A., Potapova L.I., Korolev E.V. Investigation of structure formation of activated nanomodified cement stone by IR spectroscopy. Izvestiya KSUAC. 2021. No. 3 (57), pp. 41–49. DOI: 10.52409/20731523_2021_3_41
20. Leon Meredith, Aaron Elbourne, Tamar L. Greaves, Gary Bryant, Saffron J. Bryant. Physico-chemical characterisation of glycerol- and ethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids. 2024. Vol. 394. 123777. DOI: 10.1016/j.molliq.2023.123777
21. Шаманина А.В., Айзенштадт А.М. Особенности определения удельной поверхности порошковых кварцсодержащих систем // Вестник МГСУ. 2022. Т. 17. Вып. 1. С. 42–49. DOI: 10.22227/1997-0935.2022.1. 42-49
21. Shamanina A.V., Ayzenshtadt A.M. Features of determining the specific surface area of powdered quartz-containing systems. Vestnik of the MSUCE. 2022. Vol. 17. Iss. 1, pp. 42–49. (In Russian). DOI: 10.22227/1997-0935.2022.1. 42-49
22. Кононова В.М., Шаманина А.В., Данилов В.Е. Механоактивация порошков кварцевого песка. Лучшая студенческая работа 2022: Сборник статей II Международного научно-исследовательского конкурса. 2022. С. 10–15.
22. Kononova V.M., Shamanina A.V., Danilov V.E. Mechanical activation of quartz sand powders. Best student work 2022: collection of articles of the II International Research Competition. 2022, pp. 10–15. (In Russian).
23. Alipour Tabrizy V., Denoyel R., Hamouda A.A. Characterization of wettability alteration of calcite, quartz and kaolinite: Surface energy analysis. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2011. Vol. 384, pp. 98–108. DOI: 10.1016/j.colsurfa.2011.03.021
24. Айлер Р. Химия кремнезема / Пер. с англ. Ч. 1. М.: Мир, 1982. 416 с.
24. Ailer R. Khimiya kremnezema [Chemistry of silicic: translated from English]. Moscow: Mir. 1982. Part. 1. 416 p.
25. Юзевич В.Н., Коман Б.П. Особенности температурных зависимостей энергетических параметров межфазного взаимодействия в системах кристаллический кварц–Pb и (NaCl, KCl)–Pb // Физика твердого тела. 2014. Т. 56. № 3. С. 583–588.
25. Juzevych V.N., Coman B.P. Specific features of temperature dependences of energy parameters of interfacial interactions in crystalline quartz–Pb and (NaCl, KCl)–Pb systems. Fizika tverdogo tela. 2014. Vol. 56. No. 3, pp. 583–588. (In Russian).
26. Jörg Weissmüller. Surface free energy density, surface tension and surface stress of solid–fluid interfaces. In book: Encyclopedia of Solid-Liquid Interfaces. 2024, pp. 300–307. DOI: 10.1016/B978-0-323-85669-0.00127-6
27. Changsuk Yun, Thanh Duc Dinh, Seongpil Hwang. Chemical electrification at solid/liquid/air interface by surface dipole of self-assembled monolayer and harvesting energy of moving water. Journal of Colloid and Interface Science. 2022. Vol. 615, pp. 59–68. DOI: 10.1016/j.jcis.2022.01.114.

For citation: Ibragimov R.A., Korolev E.V., Bikaeva Yu.V., Larionov I.S. The contact angles of quartz and caustic dolomite powders after mechano-magnetic treatment. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 64–70. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-64-70

Energy-Technology Indicators of a Multi-Drum Electric Furnace for Firing Vermiculite Concentrates

Number of journal: 3-2024
Autors:

Nizhegorodov A.I.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-56-63
УДК: 622.367.8:666.29.053

 

AbstractAbout AuthorsReferences
The design and working process of a new electric drum furnace for heat treatment of vermiculite concentrates and conglomerates, as well as other bulk porous materials based on a silicate binder, are considered. The electric drum furnace is devoid of the disadvantages inherent in its predecessors – furnaces with a movable hearth platform: there are no oscillating elements, dynamic effects do not occur, and there is also no resonant mode of operation, since the working drums perform rotational motion with a constant angular velocity. Using the example of a six-drum furnace, the volumes of processed material located in the firing spaces are calculated, and the second and hourly productivity of the furnace (10 m3/h or 0.0029 m3/s) are determined. The temperature of the heating elements (1167 K) was calculated, the electric power of the furnace (95.2 kW) and the specific energy intensity of the firing process of vermiculite concentrate, with a dimension of 4 mm (0.004 m) from the raw materials of the Kovdorsky deposit – 44.2 MJ/m3, which makes the furnaces of the new design competitively capable, were determined.
A.I. NIZHEGORODOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Irkutsk National Research Technical University (83, Lermontov Street, Irkutsk, 664074, Russian Federation)

1. Akhtyamov R.Ya. Vermiculite – a raw material for the production of refractory heat-insulating materials. Ogneupory i tekhnicheskaya keramika. 2009. No. 1–2, pp. 59–64. (In Russian).
2. Nizhegorodov A.I. Some aspects of the technology for preparing and firing vermiculite concentrates in electric furnaces. Stroitel’nye Materialy: technology [Construction materials: technology]. 2007. No. 11, pp. 16–17. (In Russian).
3. Nizhegorodov A.I. Electrical roasting system with vibrational batch supply. Russian Engineering Research. 2017. Vol. 37. No. 3, pp. 180–184.
4. Nizhegorodov A.I., Bryanskikh T.B., Gavrilin A.N. and others. Testing a new alternative electric furnace for firing vermiculite concentrates. Izvestiya of Tomsk Polytechnic University. Georesources Engineering. 2018. Vol. 329. No. 4, pp. 142–150. (In Russian).
5. Nizhegorodov A.I., Gavrilin A.N., Moizes B.B. Development of bulk lightweight spherosilicate material technology based on sublimation of expanded polystyrene granules. Refractories and industrial ceramics. 2020. Vol. 60. No. 1, pp. 475–481.
6. Rybyev I.A. Stroitel’noye materialovedeniye: ucheb. posobiye dlya stroitel’nykh spetsial’nostey vuzov. [Construction materials science: textbook. Manual for construction specialties of universities]. Moscow Vysshaya shkola. 2003. 701 p.
7. Kremenetskaya I.P., Belyaevsky A.T., Vasilyeva T.N. Amorphization of serpentine minerals in the technology of producing magnesia-silicate reagent for the immobilization of heavy metals. Khimiya v interesakh ustoychivogo razvitiya. 2010. No. 18, pp. 41–49. (In Russian).
8. Patent No. RU 182943. IPC F27B9/06. Electric drum furnace / A.I. Nizhegorodov. Applicant and patent holder Federal State Budgetary Educational Institution of Higher Education “Irkutsk National Research Technical University” No. 2019130471. Application 09.27.2019. Published 01.16.2020. Bull. No. 2. (In Russian).
9. Nizhegorodov A.I. Experimental determination of friction coefficients of some potentially thermoactive minerals. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 63–67. (In Russian).
10. Bryanskikh T.B., Kokourov D.V. Energy efficiency of electric furnaces with a moving hearth when firing vermiculite concentrates of various size groups. Novye ogneupory. 2017. No. 8, pp. 16–21. (In Russian).
11. Nizhegorodov A.I., Zvezdin A.V. Energotekhnologicheskiye agregaty dlya pererabotki vermikulitovykh kontsentratov [Energy technology units for processing vermiculite concentrates]. Irkutsk: Publishing house IRNTU. 2015. 250 p.
12. Patent RU 192841 U1 Electric furnace for producing expanded vermiculite / Nizhegorodov A.I. Applicant and patent holder Federal State Budgetary Educational Institution of Higher Education “Irkutsk National Research Technical University”. No. 2019121160; Application 07.08.2019. Published 02.10.2019. Bull. No. 28.
13. Kutateladze S.S. Teploperedacha i gidrodinamicheskoye soprotivleniye: spravochnoye posobiye [Heat transfer and hydrodynamic resistance: a reference guide]. Moscow: Energoatomizdat. 1990. 367 p.
14. Nizhegorodov A.I., Bryanskikh T.B., Zvezdin A.V. Modeling the process of transferring radiant energy to a moving vermiculite mass in an electric furnace with a vibrating hearth. Novye ogneupory. 2019. No. 7, pp. 23–27. (In Russian).
15. Zedgenizov V.G., Nizhegorodov A.I. Efficiency of using multi-module modifications of electric furnaces for firing vermiculite. Stroitel’nye Materialy [Construction Materials]. 2009. No. 12, pp. 51–53. (In Russian).
16. Yavorsky B.M., Detlaf A.A. [Handbook of physics for engineers and university students]. Moscow: Nauka. 1968. 940 p.

For citation: Nizhegorodov A.I. Energy-technology indicators of a multi-drum electric furnace for firing vermiculite concentrates. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 56–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-56-63

Geotechnical Practice of Construction on Unstable Slopes

Number of journal: 3-2024
Autors:

Sokolov N.S.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-48-52
УДК: 621.6.075

 

AbstractAbout AuthorsReferences
The construction of facilities for various purposes in rugged areas in cramped urban conditions for builders is the main problem associated with solving geotechnical tasks of providing both the slope itself and buildings and structures of the surrounding development in the zone of geotechnical influence. Questions arise regarding the need to develop buried retaining structures. The article considers a case from the geotechnical practice of installing retaining structures using bored piles with diameters of 600 mm and 800 mm and ground anchors arranged using electric discharge technology (ERT anchors).
N.S. SOKOLOV1,2, Candidate of Sciences (Engineering). Director (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Chuvash State University named after I.N. Ulianov (15 Moskovskiy pr., Cheboksary, Chuvash Republic, 428015, Russian Federation)
2 OOO NPF «FORST» (109a, Kalinina Street, Cheboksary, Chuvash Republic, Russian Federation)

1. Ter-Martirosian A.Z., Kivluik V.P., Isaev I.O., Shishkina V.V. Analysis of the calculated prerequisites for the geotechnical forecast of new construction on the surrounding buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 9, pp. 57–66. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-57-66
2. Mangushev R.A., Nikiforova N.S. Ekhnologicheskie osadki zdanii i sooruzhenii v zone vliyaniya podzemnogo stroitel’stva [Technological precipitation of buildings and structures in the zone of influence of underground construction]. Moscow: ASV. 2017. 168 p.
3. Ilichev V.A., Konovalov P.A., Nikiforova N.S., Bulgakov L.A. Deformations of the retaining structures upon deep excavations in Moscow. Proc. Of Fifth Int. Conf on Case Histories in Geotechnical Engineering. April 3–17. 2004. New York, pp. 5–24.
4. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523. DOI: 10.5937/jaes15-14719
5. Nikiforova N.S., Vnukov D.A. Geotechnical cut-off diaphragms for built-up area protection in urban underground development. The pros, of the 7thI nt. Symp. «Geotechnical aspects of underground construction in soft ground». May 16–18, 2011. tc28 IS Roma, AGI, 2011, № 157NIK.
6. Nikiforova N.S., Vnukov D.A. The use of cut off of different types as a protection measure for existing buildings at the nearby underground pipelines installation. Proc. of Int. Geotech. Conf. dedicated to the Year of Russia in Kazakhstan. Almaty, Kazakhstan, September 23–25. 2004, pp. 338–342.
7. Petrukhin V.P., Shuljatjev O.A., Mozgacheva O.A. Effect of geotechnical work on settlement of surrounding buildings at underground construction. Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering. Prague. 2003.
8. Sokolov N.S. Technological techniques for the device of boron-injection piles with multi-seat extensions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 10, pp. 54–57. (In Russian).
9. Sokolov N.S. Technology of increasing a base bearing capacity. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–72. (In Russian). DOI: https://doi. org/10.31659/0585-430X-2019-771-6-67–71
10. Sokolov N.S., Sokolov A.N., Sokolov S.N., Glushkov V.E., Glushkov A.V. Calculation of flight augering piles of high bearing capacity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 20–25. (In Russian).
11. Nikonorova I.V., Sokolov N.S. Construction and territorial development of landslide slopes of the Cheboksary water reservoir. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 9, pp. 13–19. (In Russian).
12. Sokolov N.S., Sokolov S.N., Sokolov A.N. Technology for the installation of a monolithic reinforced concrete grillage in cramped conditions of a functioning facility. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 12–16. (In Russian). DOI: https://doi. org/10.31659/0585-430X-2023-815-7-12-16
13. Sokolov N.S., Sokolov S.N., Sokolov A.N. The practice of construction in particularly cramped conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 41–47. (In Russian). DOI: https://doi. org/10.31659/0044-4472-2023-9-41-4
14. Sokolov N.S., Sokolov S.N., Sokolov A.N. Geotechnical technology for the construction of engineering structures on structurally unstable slopes. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 52–55. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-52-55
15. Sokolov N.S., Viktorova S.S., Fedorova T.G. Piles of increased bearing capacity. New in architecture, design of building structures and reconstruction: Materials of the VIII All-Russian (II International) Conference. Cheboksary. 2014, pp. 411–415. (In Russian).
16. Sokolov N.S., Petrov M.V., Ivanov V.A. Problems of calculation of drilling piles made using discharge-pulse. New in architecture, design of building structures and reconstruction: Materials of the VIII All-Russian (II International) Conference. Cheboksary. 2014, pp. 415–420. (In Russian).
17. Sokolov N.S., Sokolov S.N., Sokolov A.N. Fine-grained concrete as a structural building material of drilling piles ERT. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 16–19. (In Russian).
18. Patent for utility model 161650. Ustroistvo dlya kamufletnogo ushireniya nabivnoi konstruktsii v grunte [A device for camouflage broadening of a printed structure in the ground]. Sokolov N.S., Dzhantimirov H.A., Kuzmin M.V., etc. Declared 01.07.2015. Published 27.04.2016. (In Russian).

For citation: Sokolov N.S. Geotechnical practice of construction on unstable slopes. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 48–52. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-48-52

On the Mechanism of Destruction and Oxidation of Starch for the Production of Plasterboard Sheets (PBS)

Number of journal: 3-2024
Autors:

Araslankin S.V.,
Shchankin M.V.,
Buryanov A.F.,
Nipruk O.V.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-43-47
УДК: 666.914:544.433

 

AbstractAbout AuthorsReferences
The technological process of PBS production requires careful control of the phase composition of the gypsum binder used, as well as compliance with the drying modes of the sheets. This is necessary in order to ensure the adhesion of the gypsum core to the cardboard and, as a result, to give the sheets the required mechanical and physical properties. The use of various kinds of modified starches in the production technology of PBS makes it possible to achieve the required adhesion with fluctuations in the phase composition of the binder and deviations in the drying mode of products. Considering this, it becomes obvious that the characteristics of modified starches have a significant effect on the quality of PBS. The study of existing standards regulating the quality indicators of starch derivatives showed the absence of parameters reflecting the effectiveness of their use in the production technology of PBS. In this paper, the structural features of the most widely used types of modified starch are considered. The paper summarizes information about the mechanism of adhesion of the gypsum core to cardboard, the factors influencing this process, the mechanisms of starch destruction and oxidation, and also offers a list of quality indicators of starch derivatives and the requirements for them. It is shown that the effectiveness of the use of modified starches in the production of PBS is achieved by regulating the direction and depth of the processes of destruction and oxidation.
S.V. ARASLANKIN1, CEO (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.V. SHCHANKIN1, Candidate of Science (Biology), Senior Scientist (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. BURYANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. NIPRUK3, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 «Exponenta» LLC (26 A, Stanislavskogo Street, Ruzayevka, 431448, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
3 Lobachevsky State University of Nizhny Novgorod (National Research University) (23, Gagarina Avenue, Nizhny Novgorod, 603022, Russian Federation)

1. Jiang T., Duan Q., Zhu J. et al. Starch-based biodegradable materials: challenges and opportunities. Advanced Industrial and Engineering Polymer Research. 2020. Vol. 3. No. 1, pp. 8–18. https://doi.org/10.1016/j.aiepr.2019.11.003
2. Toraya-Aviles R., Segura-Campos M., Chel-Guerrero L., Betancur-Ancona D. Effects of pyroconversion and enzymatic hydrolysis on indigestible starch content and physicochemical properties of cassava (Manihot esculenta) starch. Starch. 2016. Vol. 68, pp. 1–9. https://doi.org/10.1002/star.201600267
3. Lewicka K., Siemion P., Kurcok P. Chemical modifications of starch: microwave effect. International Journal of Polymer Science. 2015. Vol. 9, pp. 1–10. https://doi.org/10.1155/2015/867697
4. Le Thanh-Blicharz J., Błaszczak W., Szwengiel A. et al. Molecular and supermolecular structure of commercial pyrodextrins. Journal of Food Science. 2016. Vol. 81. No. 9, pp. 135–142. https://doi.org/10.1111/1750-3841.13401
5. Sun Z., Kang J., Shi Y.C. Changes in molecular size and shape of waxy maize starch during dextrinization. Food Chemistry. 2021. Vol. 348. 128983. https://doi.org/10.1016/j.foodchem.2020.128983
6. Забежинский Я.Л., Белов А.Д. О механизме сцепления гипса с картоном при производстве сухой гипсовой штукатурки // Механизм твердения вяжущих и гипсовые материалы: Сборник трудов. 1957. № 1. С. 90–97.
6. Zabezhinsky Ya.L., Belov A.D. About the mechanism of adhesion of gypsum to cardboard in the production of dry gypsum plaster. Hardening mechanism of binders and gypsum materials. Collection of works. 1957. No. 1, pp. 90–97 (In Russian).
7. Maulana M.I., Rahandi Lubis M.A., Febrianto F. et al. Environmentally friendly starch-based adhesives for bonding high-performance wood composites: a review. Forests. 2022. Vol. 13. No. 10. 1614. https://doi.org/10.3390/f13101614
8. Li H., Ji J., Yang L. et al. Structural and physicochemical property changes during pyroconversion of native maize starch. Carbohydrate Polymers. 2020. Vol. 245. 116560. https://doi.org/10.1016/j.carbpol.2020.116560
9. Weil W., Weil R.C., Keawsompong S. et al. Pyrodextrins from waxy and normal tapioca starches: Molecular structure and in vitro digestibility. Carbohydrate Polymers. 2021. Vol. 252. 117140. https://doi.org/10.1016/j.carbpol.2020.117140
10. Ye S.J., Baik M.Y. Characteristics of physically modified starches. Food Science and Biotechnology. 2023. Vol. 32. No. 7, pp. 875–883. https://doi.org/10.1007/s10068-023-01284-3
11. Lei Su, Fengjuan Xiang, Renbing Qin, Zhanxiang Fang. Study on mechanism of starch phase transtion in wheat with different moisture content. Food Science and Technology (Campinas). 2022. Vol. 45. No. 1, pp. 1–13. https://doi.org/10.1590/fst.106521
12. Nawaz H., Waheed R., Nawaz M., Shahwar D. Physical and chemical modifications in starch structure and reactivity. Chemical Properties of Starch. 2020, рр. 1–21. https://doi.org/10.5772/intechopen.88870
13. Bai Y., Shi Y.C. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy. Carbohydrate Polymers. 2016. Vol. 151, pp. 426–433. https://doi.org/10.1016/j.carbpol.2016.05.058
14. Kwon S., Chung K.M., Shin S.I., Moon T.W. Contents of indigestible fraction, water solubility, and color of pyrodextrins made from waxy sorghum starch. Cereal Chemistry. 2005. Vol. 82. No. 1, pp. 101–104. https://doi.org/10.1094/CC-82-0101
15. Dimri S., Aditi Bist Y., Singh S. Oxidation of Starch. In: Sharanagat V.S., Saxena D.C., Kumar K., Kumar Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_3

For citation: Araslankin S.V., Shchankin M.V., Buryanov A.F., Nipruk O.V. On the mechanism of destruction and oxidation of starch for the production of plasterboard sheets (PBS). Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 43–47. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-43-47

Physico-Chemical Methods for Studying Materials for the Production of Concrete and Reinforced Concrete

Number of journal: 3-2024
Autors:

Akberova S.M.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-37-40
УДК: 691.3

 

AbstractAbout AuthorsReferences
In modern construction, almost only cement concretes are used for monolithic concrete and reinforced concrete structures and facilities, prepared, as a rule, on natural stone aggregates from dense rocks. One of the widespread and relatively cheap local materials used for the manufacture of concrete is a sand-gravel mixture. The issue of using local materials of Azerbaijan to produce concrete and reinforced concrete is being considered. The properties of monolith (Yardymli district), latite (Lerik district), magnetite (Dashkesan district) and alunite (Dashkesan district) for the production of concrete and reinforced concrete are given.
S.M. AKBEROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Azerbaijan University of Architecture and Construction (11 Ayna Sultanova Street, Baku, 1073, AZ)

1. Сапачева Л.В. Актуальные проблемы строительного материаловедения и пути их решения // Строительные материалы. 2019. № 1. С. 83–85. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-83-85
1. Sapacheva L.V. Actual problems of construction materials science and ways to solve them. Stroitel’nye Materialy [Construction Мaterials]. 2019. No. 1, pp. 83–85. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-83-85
2. Толыпина Н.М. К вопросу о взаимодействии цементной матрицы с заполнителями // Современные наукоемкие технологии. 2016. № 6. С. 81–85.
2. Tolypina N.M. On the interaction of the cement matrix with aggregates. Sovremennye naukoemkie tekhnologii. 2016. No. 6, pp. 81–85. (In Russian).
3. Фишер Х.Б., Второв Б.Б., Бурьянов А.Ф. Исследование влияния многокомпонентных активаторов твердения на свойства природного ангидрита // Строительные материалы. 2023. № 1. С. 63–68. DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-63-68
3. Fisher H.B., Vtorov B.B., Buryanov A.F. Study of the influence of multicomponent hardening activators on the properties of natural anhydrite. Stroitel’nye Materialy [Construction Мaterials]. 2023. No. 1, pp. 63–68. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-63-68
4. Строкова В.В. Малые архитектурные формы: состав и свойства бетона для их изготовления // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2021. № 11. С. 8–31.
4. Strokova V.V. Small architectural forms: composition and properties of concrete for their manufacture. Bulletin of the Belgorod State Technological University named after V.G. Shukhova. 2021. No. 11, pp. 8–31. (In Russian).
5. Акберова С.М., Гахраманов С.Г., Курбанова Р.А. Самоуплотняющийся бетон на основе материалов Азербайджана // Строительные материалы. 2022. № 7. С. 10–15. DOI: https://doi.org/10.31659/0585-430X-2022-804-7-10-15
5. Akberova S.M., Gakhramanov S.G., Kurbanova R.A. Self-sealing concrete based on Azerbaijani materials. Stroitel’nye Materialy [Construction Мaterials]. 2022. No. 7, pp. 10–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-10-15
6. Mirzayev M.N., Donkov A.A., Popov E.A., Demir E., Jabarov S.H., Chkhartishvili L.S., Adeojo S.A., Doroshkevich A.S., Sidorin A.A., Asadov A.G., Thabethe T.T., Khandaker M.U., Alamri S., Osman H., Trukhanov A.V., Trukhanov S.V. Modeling and X-ray analysis of defect nanoclusters formation in B4C under ion irradiation. Nanomaterials. 2022. No. 12 (15), pp. 2644. https://doi.org/10.3390/nano12152644
7. Ablay G.J., Carroll M.R., Palmer, M.R., Marti J., Sparks, R.S.J. Basanite-phonolite lineages of the teide-pico viejo volcanic complex. Journal of Petrology. 1998. No. 39, pp. 905–909. https://doi.org/10.1093/petroj/39.5.905
8. Mirzayev M.N., Mehdiyeva R.N., Melikova S.Z., Jabarov S.H., Thabethe T.T., Biira S., Kurbanov M.A., Tiep N.V. Formation of color centers and concentration of defects in boron carbide irradiated at low gamma radiation doses. Journal of the Korean Physical Society. 2019. No. 74 (4), pp. 363–367. DOI: 10.3938/jkps.74.363
9. Asgerov E.B., Ismailov D.I., Mehdiyeva R.N., Jabarov S.H., Mirzayev M.N., Kerimova E.M., Dang N.T. Differential-Thermal and X-Ray Analysis of TlFeS2 and TlFeSe2 Chalcogenides. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2018. No. 12 (4), pp. 688–691. DOI: 10.1134/S1027451018040043
10. Mirzayev M.N. Simultaneous measurements ofheat flow rate and thermal properties of nanoboron trioxide under neutron irradiation at thelow and high temperature. Vacuum. 2020.No. 173, pp. 109–162. https://doi.org/10.1016/j.vacuum.2019.10916
11. Demir E., Gledenov Y.M., Tuğrul A.B., Mirzayev M.N., Islamov A.Kh., Turchenko V.A., Yılmaz O., Büyük B., Sansarbayar E., Öveçoğlu M.L. Structural and morphological studies under small-angle neutron scattering of tungsten alloys. Moscow University Physics Bulletin. 2019. No. 74, pp. 509–513. https://doi.org/10.3103/S0027134919050059
12. Ferdinando B., Cristian B., Marco P. Nomenclature and classification of the spinel supergroup. European Journal of Mineralogy. 2019. No. 31 (1), pp. 183–192. https://doi.org/10.1127/ejm/2019/0031-2788
13. Azimova S.R., Abdullayev N.M., Aliyev Y.I., Mirzayev M.N., Skuratov V.A., Mutali A.K., Jabarov S.H. Study on the thermodynamic behavior of Sb-Te binary systems with swift heavy-ions irradiation at the high temperatures. Journal of the Korean Physical Society. 2020. No. 77, pp. 240–246. https://doi.org/10.3938/jkps.77.240
14. Hashimov R.F., Mikailzade F.A., Trukhanov S.V., Lyadov N.M., Vakhitov I.R., Trukhanov A.V., Mirzayev M.N. Structure and thermal analysis of Ba0.5La0.5MnO3 polycrystalline powder. International Journal of Modern Physics B. 2019. No. 33 (22), pp. 1950244. DOI: 10.1142/S0217979219502448
15. Belichko D.R., Konstantinova T.E., Volkova G.K., Mirzayev M.N., Maletsky A.V., Burkhovetskiy V.V., Doroskevich A.S., Mita C., Mardare D.M., Janiska B., Nabiyev A.A., Lyubchyk A.I., Tatarinova A.A., Popov E. Effects of YSZ ceramics doping with silica and alumina on its structure and properties. Materials Chemistry and Physics. 2022. No. 287, pp. 126237. https://doi.org/10.1016/j.matchemphys.2022.126237

For citation: Akberova S.M. Physico-chemical methods for studying materials for the production of concrete and reinforced concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 3, pp. 37–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-37-40

Corrosion Resistance of Shotcrete under the Influence of Salt Solutions

Number of journal: 3-2024
Autors:

Novikova U.A.,
Strokin K.B.,
Krasilnikova I.A.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-31-36
УДК: 666.972

 

AbstractAbout AuthorsReferences
The article describes the relevance of new scientific research on the corrosion resistance of shotcrete applied as a protective coating on building structures. A formulation has been developed for five compositions of shotcrete, consisting of a basic and additional binder, fillers and hardening accelerators. The size and nature of the pores of the manufactured samples, the development of destruction by changes in mass and strength are investigated. The physicochemical features of the corrosive destruction of some shotcrete compositions in solutions of sodium sulfate and sodium chloride have been established, and the diffusion coefficients of chloride ions and sulfate ions have been determined. The numerical values of the parameters limiting the mass transfer of calcium hydroxide during corrosion of shotcrete are determined: the coefficients of mass conductivity and mass transfer.
U.A. NOVIKOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
K.B. STROKIN1, Doctor of Sciences (Economics), Advisor to the RAASN (This email address is being protected from spambots. You need JavaScript enabled to view it. );
I.A. KRASILNIKOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Sakhalin State University (33, Kommunisticheskiy Avenue, Yuzhno-Sakhalinsk, 693008, Russian Federation)
2 Vladimir State University (87, Gorky Street, Vladimir, 600000, Russian Federation)

1. Lesovik V.S., Fedyuk R.S., Panarin I.I. Shotcrete-concretes and injection solutions for complex repair of underground structures. Academia. Architecture and construction. 2023. No. 1, pp. 101–107. (In Russian). DOI: 10.22337/2077-9038-2023-1-101-107.
2. Chongming Tian, Yueping Tong, Junyuan Zhang, Fei Ye, Guifeng Song, Yin Jiang, Meng Zhao. Experimental study on mix proportion optimization of anti-calcium dissolution shotcrete for tunnels based on response surface methodology. Underground Space. 2024. Vol. 15, pp. 203–220. DOI: 10.1016/j.undsp.2023.07.002
3. Fedosov S.V., Bulgakov B.I., Krasilnikov I.V., Hung N.X., Lam T.V. Forecast of the durability of shore structures made of reinforced concrete. Solid State Phenomena. 2022. Vol. 334, pp. 217–224. DOI: 10.4028/p-8657j1
4. Renhe Yang, Tingshu He, Mengqin Guan, Xinqi Guo, Yilun Xu, Rongsheng Xu, Yongqi D. Preparation and accelerating mechanism of aluminum sulfate-based alkali-free accelerating additive for sprayed concrete. Construction and Building Materials. 2020. 234. 117334. DOI: 10.1016/j.conbuildmat.2019.117334
5. Stepanova V.F., Rozental N.K., Chekhny G.V., Baev S.M. Determination of corrosion resistance of shotcrete as a protective coating of concrete and reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 69–72. (In Russian). DOI: 10.31659/0585-430X-2018-762-8-69-72
6. Fedosov S.V., Krasilnikov I.V., Rumyantseva V.E., Krasilnikova I.A. Physical features of the problems of liquid corrosion of reinforced concrete from the standpoint of the theory of heat and mass transfer. Structural Mechanics of Engineering Constructions and Buildings. 2023. No. 19 (4), pp. 392–409. (In Russian). DOI: 10.22363/1815-5235-2023-19-4-392-409
7. Rosental N.K. Korrozionnaja stojkost’ cementnyh betonov nizkoj i osobo nizkoj pronicaemosti [Corrosion resistance of cement concrete of low and particularly low permeability]. Moscow: FSUE CPP. 2006. 520 p.
8. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Krasilnikova I.A. Research of physical and chemical processes in the system “cement concrete – liquid aggressive environment”. ChemChemTech. 2022. Vol. 65. No. 7, pp. 61–70. DOI: 10.6060/ivkkt.20226507.6606
9. Smirnova N.N., Krasilnikov I.V. An effect of the nature of immobilized components on the adsorption and mass transfer properties of ultrafiltration membranes based on sulfonate-containing сopolyamide. Russian Journal of Applied Chemistry. 2019. Vol. 92. No. 11, pp. 1570–1580. DOI: 10.1134/S1070427219110144
10. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Krasilnikova I.A. Mathematical modeling of unsteady mass transfer in the cement concrete-liquid medium system, limited by internal diffusion and external mass transfer. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 134–140. (In Russian). DOI: https://doi.Org/10.31659/0585-430X-2022-799-1-2-134-140
11. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Krasilnikova I.A. Mathematical modeling of mass transfer in the “cement concrete-liquid medium” system, limited by the internal diffusion of the transferred component at liquid corrosion of the first type. Stroitel’nye Materialy [Construction Materials]. 2021. No. 7, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-793-7-4-9
12. Ayumi Manawadu, Pizhong Qiao. Cohesive fracture simulation and failure modes of shotcrete-concrete interface bond in Mode II loading. Engineering Fracture Mechanics. 2024. Vol. 299. 109959. DОI: https://doi.org/10.1016/j.engfracmech.2024.109959
13. Fedosov S.V., Rumjanceva V.E., Krasilnikov I.V., Kas’janenko N.S. Non-stationary mass transfer in the processes of corrosion of the second type of cement concrete. Small Fourier numbers, with internal mass source. Izvestiya of higher educational institutions. Chemistry and chemical technology. 2015. Vol. 58. No. 1, pp. 97—99. (In Russian).
14. Fedosov S.V., Rumjanceva V.E., Krasilnikov I.V., Kas’janenko N.S. Theoretical and experimental studies of processes of corrosion of the first kind of cement concretes in the presence of inner source of mass. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 44—47. (In Russian).
15. Krasilnikov I.V. Determination of the parameters of the nonisothermal mass transfer process during liquid corrosion of concrete. Vestnik of the Perm National Research Polytechnic University. Applied ecology. Urbanism. 2022. No. 1, pp. 99–109. (In Russian). DOI: 10.15593/2409-5125/2022.1.09
16. Fedosov S.V., Rumyanceva V.E., Krasilnikov I.V., Kasyanenko N.S. Modeling of mass transfer in the processes of corrosion of the first type of cement concrete in the “liquid–reservoir” system in the presence of an internal source of mass in the solid phase. Vestnik grazhdanskih inzhenerov. 2013. No. 2 (37), pp. 65–70. (In Russian).
17. Fedosov S.V., Rumyanceva V.E., Krasilnikov I.V. Metody matematicheskoj fiziki v prilozhenijah к problemam korrozii betona v zhidkih agressivnyh sredah [Methods of mathematical physics in applications to the problems of concrete corrosion in liquid aggressive media]. Moscow: ASV. 2021. 246 p.
18. Zhang Y., Xu M., Song J., Wang Ch., Wang X., Hamad B.A. Study on the corrosion change law and prediction model of cement stone in oil wells with CO2 corrosion in ultra-high-temperature acid gas wells. Construction and Building Materials. 2022. Vol. 323. 125879. DOI:10.1016/j.conbuildmat.2021.125879
19. Fedosov S.V., Roumyantseva V.E., Krasilnikov I.V., Konovalova V.S., Evsyakov A.S. Monitoring of the penetration of chloride ions to the reinforcement surface through a concrete coating during liquid corrosion. IOP Conference Series Materials Science and Engineering. 2018. Vol. 463 (4). 042048. DOI: 10.1088/1757-899X/463/4/042048
20. Fedosov S.V., Roumyantseva V.E., Krasilnikov I.V., Konovalova V.S. Physical and mathematical modelling of the mass transfer process in heterogeneous systems under corrosion destruction of reinforced concrete structures. IOP Conference Series: Materials Science and Engineering. 2018. 012039. DOI: 10.1088/1757-899X/456/1/012039
21. Fedosov S.V., Rumyantseva V.E., Krasilnikov I.V., Loginova S.A. Study of effect of mass transfer processes on reliability and durability of reinforced concrete structures operating in liquid aggressive media. Stroitel’nye Materialy [Construction Materials]. 2017. No. 12, pp. 52–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-755-12-52-57
22. Rumyantseva V.E., Krasilnikov I.V., Krasilnikova I.A., Novikova U.A., Strokin K.B. Changing the bearing capacity of building structures of textile and light industry enterprises. Izvestiya of higher educational institutions. Textile industry technology. 2023. No. 2 (404), pp. 218–227. (In Russian).
23. Fedosov S.V., Rumjanceva V.E., Krasilnikov I.V., Fedosova N.L. Study of diffusion processes of mass transfer during liquid corrosion of the first type of cement concrete. Izvestiya of higher educational institutions. Chemistry and chemical technology. 2015. Vol. 58. No. 1, pp. 99–104. (In Russian).

For citation: Novikova U.A., Strokin K.B., Krasilnikova I.A. Corrosion resistance of shotcrete under the influence of salt solutions. Stroitel’nye Materialy [Construction Materials]. 2024. No. 3, pp. 31–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-31-36

Modeling of Accelerated Hardening of Self-Compacting Concrete by Methods of Mathematical Experiment Planning

Number of journal: 3-2024
Autors:

Kastornykh L.I.,
Gikalo M.A.,
Kaklyugin A.V.,
Serebryanaya I.A.,
Kuzmenko D.V.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-25-30
УДК: 691.32

 

AbstractAbout AuthorsReferences
Studies have been performed simulating the processes of accelerated hardening of self-sealing concrete prepared on sulfate-resistant Portland cement with a polycarboxylate superplasticizer. As part of the concrete mix, construction waste was used – sand from crushed concrete as an enlarging component in an amount of 10% of the mass of fine aggregate. The Polyplast PC anionactive superplasticizer was used as a universal additive for precast and monolithic self-sealing concrete with a dosage consistent with the mineralogical and dispersed composition of sulfate-resistant Portland cement. For mathematical modeling of concrete hardening intensification processes, a two-factor simplex was adopted-a summarized plan on a hexagon inscribed in a circle, as the most convenient for solving prescription and technological problems of building materials science. The factors that most affect the physico-mechanical properties of self-sealing concrete after heat treatment were the duration of preliminary holding of concrete without coolant supply and the maximum heating temperature of concrete. During the implementation of the full factor experiment, the conditions of comparability were observed: a self–sealing mixture of the same composition was prepared, the rate of temperature rise was 10оC/h, and the total duration of thermal exposure was 15 hours. It has been found that the presence of an anionactive chemical additive and a mineral additive, which is part of Portland cement, slow down the setting processes of cement paste and concrete mixture. It was revealed that the retarding effect of the “sulfate-resistant Portland cement-superplasticizer” pair is explained by the spatial effect of the chemical additive and the grain characteristics of cement containing an easily grindable mineral additive. It is proved that the application of methods of mathematical planning of the experiment makes it possible to comprehensively assess the influence of prescription and technological factors on the strength characteristics of heat-treated self-sealing concrete. It was found that for the studied self-sealing concrete on sulfate-resistant Portland cement, the holding time before applying the coolant should be 4.8 hours, and the maximum heating temperature of concrete should not exceed 48оC.
L.I. KASTORNYKH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. GIKALO, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. KAKLYUGIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. SEREBRYANAYA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.V. KUZMENKO, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (162, Sotsialisticheskaya Street, Rostov-on-Don, 344022, Russian Federation)

1. Sakhibgareev R.R., Lomakina L.N., Sakhibgireev Rom.R., Sinitsin D.A., Ibraev A.A. Investigation of heavy concrete hardening processes under condition of alternate freezing and thawing during winter concreting. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 51–59. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-51-59
2. Mozgalev K.M., Golovnev S.G., Mozgaleva D.A. Efficiency of application of self-compacting concretes in construction of cast-in-situ buildings in winter conditions. Vestnik of the South Ural State University. Architecture and Construction Series. 2014. Vol. 14. No. 1, pp. 33–36. (In Russian).
3. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A. The effect of polycarboxylate-based superplasticizers on the efficiency of heat treatment of monolithic concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 35–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-35-41
4. Smirnova O.M. Low-Heat Steaming Treatment of Concrete With Polycarboxylate Superplasticizers. Magazine of Civil Engineering. 2021. No. 2 (102). 10213. DOI: 10.34910/MCE.102.13
5. Kastornykh L.I., Trischenko I.V., Kakljugin A.V., Shershen D.R. Heat curing efficiency estimation of concrete with superplastificators on polycarboxylates basis. Materials Science Forum. 2019. Vol. 974, pp. 231–236. DOI: https://doi.org/10.4028/www.scientific.net/MSF.974.231
6. Smirnova O.M. Compatibility of Portland cement and polycarboxylate-based superplasticizers in high-strength concrete for precast constructions. Magazine of Civil Engineering. 2016. No. 6, рp. 12–22. DOI: 10.5862/MCE.66.2
7. Kong F.R., Pan L.S., Wang C.M., Zhang D.L., Xu N. Effect of polycarboxylate superplasticizers with different molecular on the hydration behavior of cement paste. Construction and Building Materials. 2016. No. 105, рp. 545–553. https://doi.org/10.1016/j.conbuildmat.2015.12.178
8. Kastornykh L.I., Kakljugin A.V., Kholodnyak M.G, Osipchuk I.V. Modified concrete mixes for monolithic construction. Materials Science Forum. 2021. Vol. 1043. pp. 81–91. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1043.81
9. Nesvetaev G., Koryanova Y., Zhilnikova T., Kolleganov A. To the problem of assessing the level of self-stresses during the formation of the structure of self-compacting concrete. Materials Science Forum. 2019. Vol. 974, pp. 293–298. DOI: 10.4028/www.scientific.net/MSF.974.293
10. Voznesensky V.A., Lyashenko T.V., Ogarkov B.L. Chislennye metody resheniya stroitel’no-tekhnologicheskikh zadach na EVM [Numerical methods for solving construction and technological problems on a computer]. Kiev: Vischa shkola. 1989. 324 p.
11. Nizina T.A., Balykov A.S. Construction of experimental statistical models “composition – property” of physical and mechanical characteristics of modified dispersed reinforced fine-grained concretes. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2016. Iss. 45 (64), pp. 54–66. (In Russian).
12. Nizina T.A., Balykov A.S., Makarova L.V. Application of composition-property models to study properties of modified dispersed reinforced fine-grained concretes. Vestnik of the BSTU named after V.G. Shukhov. 2016. No. 12, pp. 15–21. (In Russian).
13. Sivkov S.P. Specific surface of cement and their properties. Sukhie stroitel’nye smesi. 2011. No. 3, pp. 39–41. (In Russian).
14. Lipilin A.B., Korenyugina N.V., Wexler M.V. Selective disintegrant activation of Portland cement (SDAP). Stroitel’nye Materialy [Construction Materials]. 2007. No. 7, pp. 74–76. (In Russian).
15. Bogdanov R.R., Pashaev A.V., Zhuravlev M.V. Influence of plasticizing additives based on polycarboxylate and poly-aryl on the physical and technical properties of cement compositions. Vestnik tekhnologicheskogo universiteta. 2018. Vol. 21. No. 11, pp. 45–49. (In Russian).
16. Kaprielov S.S., Sheinfeld A.V., Dondukov V.G. Cements and additives for the production of high-strength concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 11, pp. 4–10. (In Russian).

For citation: Kastornykh L.I., Gikalo M.A., Kaklyugin A.V., Serebryanaya I.A., Kuzmenko D.V. Modeling of accelerated hardening of self-compacting concrete by methods of mathematical experiment planning. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 25–30. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-25-30

The Increasing еhe Efficiency of Fiber Reinforced High-Strength Self-Compacting and Carcass Concretes

Number of journal: 3-2024
Autors:

Erofeev V.T.,
Tarakanov O.V.,
Ananyev S.V.,
Lesnov V.V.,
Erofeeva I.V.,
Sanyagina Ya.A.,
Sidorov N.S.,
Ananyeva Y.S.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-15-24
УДК: 666.972.1

 

AbstractAbout AuthorsReferences
The results of experimental and theoretical studies of fiber reinforced concretes are presented. The purpose of the research was to establish physical and mechanical properties of self-compacting, carcass concrete and fiber reinforced concrete. When performing the research, white cement was used as a binder. As a reactive additive was used white carbon black BS-100. Plasticizing of the system was carried out by polycarboxylate SP. To increase the volume of dispersed phase, the combined filler from rheologically active fine ground rocks was used, namely: quartz flour R-6, and microcalcite RM-5. To form the filled structure of the composite we also used fine sand PB-150, and at the first stage steel microfiber “BMZ” and glass fiber «Antikrek sp» were used as dispersed reinforcement. Dispersed reinforcement with glass fiber 0,15 mm diameter and 18 mm long, with volume reinforcement of 0,8% increased the composite compressive strength by 13,4%, flexural tensile strength by 12,8%. Dispersed reinforcement with metal fiber of 0,15 mm diameter and 15 mm length, at volume reinforcement of 4,2% contributed to increase the compressive strength by 46,5%, flexural tensile strength by 186,6%. Further increase in the strength of fiber concretes is possible by strengthening the anchorage of fibers in the matrix. Therefore, at the second stage, the influence of different types of metal fibres, differing in shape and type of anchor, on the properties of dispersed-reinforced concrete was established. An increase in flexural and compressive strength from the introduction of dispersed reinforcement of “Spring”, “Wave” and “Dramix” types is shown. The assumption of efficiency from application of fiber of “dumbbell-like” form in modern reaction-powder composites, and also manufacturing of materials with application of frame technology, consisting at first in formation of a frame from glued grains of large aggregate and then in impregnation of its empty matrix component, is put forward. Comparison of calculated and actual strength of fiber concretes is carried out
V.T. EROFEEV1, Academician of RAASN, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. TARAKANOV2, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.V. ANANYEV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. LESNOV4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. EROFEEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Ya.A. SANYAGINA5, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.S. SIDOROV3, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Y.S. ANANYEVA3, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Penza State University of Architecture and Construction (28, Germana Titova Street, Penza, 440028, Russian Federation)
3 Vladimir State University named after A.G. and N.G. Stoletov (87, Gorkogo Street, Vladimir, 600000, Russian Federation)
4 National Research Mordovian State University named after N.P. Ogarev (68, Bolshevistskaya Street, Saransk, 430005, Russian Federation)
5 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Морозов В.И., Пухаренко Ю.В. Эффективность применения фибробетона в конструкциях при динамических воздействиях // Вестник МГСУ. 2014. № 3. С. 189–196.
1. Morozov V.I., Pukharenko Yu.V. Efficiency of using fiber-reinforced concrete in structures under dynamic influences. Vestnik MGSU. 2014. No. 3, pp. 189–196. (In Russian).
2. Каприелов С.С., Травуш В.И., Карпенко Н.И. и др. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. 2 // Строительные материалы. 2008. № 3. С. 9–13.
2. Kaprielov S.S., Travush V.I., Karpenko N.I. et al. Modified high-strength concrete of classes B80 and B90 in monolithic structures. Part 2. Stroitel’nye Materialy [Construction Materialy]. 2008. No. 3, pp. 9–13. (In Russian).
3. Рабинович Ф.Н. Композиты на основе дисперсно армированных бетонов. Вопросы теории и проектирования, технология, конструкции: Монография. М.: АСВ, 2011. 642 с.
3. Rabinovich F.N. Kompozity na osnove dispersno armirovannykh betonov. Voprosy teorii i proyektirovaniya, tekhnologiya, konstruktsii: Monografiya [Composites based on dispersed reinforced concrete. Questions of theory and design, technology, structures: Monograph]. Mosocw: ASV. 2011. 642 p.
4. Клюев С.В. Высокопрочный фибробетон для промышленного и гражданского строительства // Инженерно-строительный журнал. 2012. № 8 (34). С. 61–66.
4. Klyuev S.V. High-strength fiber-reinforced concrete for industrial and civil construction. Magazine of Civil Engineering. 2012. No. 8 (34), pp. 61–66.
5. Зерцалов М.Г., Хотеев Е.А. Экспериментальное определение характеристик трещиностойкости фибробетона // Вестник МГСУ. 2014. № 5. С. 91–99.
5. Zertsalov M.G., Khoteev E.A. Experimental determination of the crack resistance characteristics of fiber-reinforced concrete. Vestnik MGSU. 2014. No. 5, pp. 91–99. (In Russian).
6. Леснов В.В., Борискин А.С., Ерофеев В.Т., Коняшин А.А. Дисперсно-армированные композиты для дорожных покрытий и транспортных сооружений // Транспортное строительство. 2007. № 5. С. 24–27.
6. Lesnov V.V., Boriskin A.S., Erofeev V.T., Konyashin A.A. Dispersion-reinforced composites for road surfaces and transport structures. Transportnoye stroitel’stvo. 2007. No. 5, pp. 24–27. (In Russian).
7. Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Erofeev V.T., Durachenko A.V. Fine-grain concrete reinforced by polypropylene fiber. Research Journal of Applied Sciences. 2015. Vol. 10 (10), pp. 624–628.
8. ASTM C1856/C1856M-17 Standard practice for fabricating and testing specimens of ultra-high performance concrete. 2017. DOI: 10.1520/C1856_C1856M-17
9. Wang D., Shi C., Wu Z., Xiao J., Huang Z., Fang Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials. 2015. Vol. 96, pp. 368–377. https://doi.org/10.1016/j.conbuildmat.2015.08.095
10. Mayhoub O.A., Nasr E.S.A.R., Ali Y.A., Kohail M. The influence of ingredients on the properties of reactive powder concrete: a review, Ain Shams Engineering Journal. 2021. Vol. 12. Iss. 1, pp. 145–158. https://doi.org/10.1016/j.asej.2020.07.016
11. Song J., Liu S. Properties of reactive powder concrete and its application in highway bridge. Advances in Materials Science and Engineering. 2016. 5460241. https://doi.org/10.1155/2016/5460241
12. Seok Jang H., Seok So H., So S. The properties of reactive powder concrete using PP fiber and pozzolanic materials at elevated temperature. Journal of Building Engineering. 2016. Vol. 8, pp. 225–230. https://doi.org/10.1016/j.jobe.2016.09.010
13. Abid M., Hou X., Zheng W., Hussain R.R. High temperature and residual properties of reactive powder concrete – a review. Construction and Building Materials. 2017. Vol. 147, pp. 339–351. https://doi.org/10.1016/j.conbuildmat.2017.04.083
14. Chen X., Wei Wan D., Zhi Jin L., Qian K., Fu F. Experimental studies and microstructure analysis for ultra high-performance reactive powder concrete. Construction and Building Materials. 2019. Vol. 229. 116924. https://doi.org/10.1016/j.conbuildmat.2019.116924
15. Shi C., Wu Z., Xiao J., Wang D., Huang Z., Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials. 2015. Vol. 101. P. 1, pp. 741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
16. Gamal I.K., Elsayed K.M., Makhlouf M.H., Alaa M. Properties of reactive powder concrete using local materials and various curing conditions. European Journal of Engineering and Technology Research. 2019. Vol. 4 (6), pp. 74–83. DOI:10.24018/ejers.2019.4.6.1370
17. Zhang W., Han B., Yu X., Ruan Y., Ou J. Nano boron nitride modified reactive powder concrete. Construction and Building Materials. 2018. Vol. 179, pp. 186–197. https://doi.org/10.1016/j.conbuildmat.2018.05.244
18. Li Z., Di S. The microstructure and wear resistance of microarc oxidation composite coatings containing nano-hexagonal boron nitride (HBN) particles. Journal of Materials Engineering and Performance. 2017. Vol. 26, pp. 1551–1561. https://doi.org/10.1007/s11665-017-2582-1
19. Wang, T., Wang, M., Fu, L. et al. Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets. Scientific Reports. 2018. Vol. 8. 1557. https://doi.org/10.1038/s41598-018-19945-3
20. Wang D., Zhang W., Ruan Y., Yu X., Han B. Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete. Construction and Building Materials. 2018. Vol. 189, pp. 487–497. https://doi.org/10.1016/j.conbuildmat.2018.09.041
21. Han B.B., Li Z., Zhang L., Zeng S., Yu X., Han B.B. et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2. Construction and Building Materials. 2017. Vol. 148, pp. 104–112. https://doi.org/10.1016/j.conbuildmat.2017.05.065
22. Zhang R., Cheng X., Hou P., Ye Z. Influences of nano-TiO2 on the properties of cement-based materials: hydration and drying shrinkage. Construction and Building Materials. 2015. Vol. 81, pp. 35–41. https://doi.org/10.1016/j.conbuildmat.2015.02.003
23. Irshidat M.R., Al-Saleh M.H. Thermal performance and fire resistance of nanoclay modified cementitious materials. Construction and Building Materials. 2018. Vol. 159, pp. 213–219. https://doi.org/10.1016/j.conbuildmat.2017.10.127
24. Reches Y. Nanoparticles as concrete additives: review and perspectives. Construction and Building Materials. 2018. Vol. 175, pp. 483–495. https://doi.org/10.1016/j.conbuildmat.2018.04.214
25. Hou P.K., Kawashima S., Wang K.J., Corr D.J., Qian J.S., Shah S.P. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cement and Concrete Composites. 2013. Vol. 35. Iss. 1, pp. 12–22. https://doi.org/10.1016/j.cemconcomp.2012.08.027
26. Kawashima S., Seo J.W.T., Corr D., Hersam M.C., Shah S.P. Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. Materials and Structures. 2014. Vol. 47, pp. 1011–1023. https://doi.org/ 10.1617/s11527-013-0110-9
27. Barkoula N.M., Ioannou C., Aggelis D.G., Matikas T.E. Optimization of nano-silica’s addition in cement mortars and assessment of the failure process using acoustic emission monitoring. Construction and Building Materials. 2016. Vol. 125, pp. 546–552 https://doi.org/10.1016/j.conbuildmat.2016.08.055
28. Cwirzen A., Penttala V., Vornanen C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC. Cement and Concrete Research. 2008. Vol. 38. Iss. 10, pp. 1217–1226. https://doi.org/10.1016/j.cemconres.2008.03.013
29. Cwirzen A., Penttala V., Vornanen C. RPC mix optimization by determination of the minimum water requirement of binary and polydisperse mixtures. Conference: International Symposium on Innovation & Sustainability of Structures in Civil Engineering – Including Seismic Engineering. Vol. 3, pp. 2191–2201. November 20–22, 2005. Nanjing, China.
30. Erofeev V., Bobryshev A., Lakhno A., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Materials Science Forum. Vol. 871, pp. 96–103. https://doi.org/10.4028/www.scientific.net/MSF.871.96
31. Xiaoying L., Jun L., Zhongyuan L., Li H., Jiakun C. Preparation and properties of reactive powder concrete by using titanium slag aggregates. Construction and Building Materials. 2020. Vol. 234. 117342. https://doi.org/10.1016/j.conbuildmat.2019.117342
32. Wang H., Gao X., Liu J., Ren M., Lu A. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete. Construction and Building Materials. 2018. Vol. 187, pp. 699–707. https://doi.org/10.1016/j.conbuildmat.2018.07.229
33. Nadiger A., Madhavan M.K. Influence of mineral admixtures and fibers on workability and mechanical properties of reactive powder concrete. Journal of Materials in Civil Engineering. Vol. 31 (2). DOI: 10.1061/(ASCE)MT.1943-5533.0002596
34. Ерофеев В.Т., Баженов Ю.М., Завалишин Е.В. и др. Силикатные и полимерсиликатные композиты каркасной структуры роликового формования. М.: АСВ, 2009. 160 с.
34. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V. et al. Silikatnyye i polimersilikatnyye kompozity karkasnoy struktury rolikovogo formovaniya [Silicate and polymer-silicate composites of frame structure of roller molding]. Moscow: ASV. 2009. 160 p.
35. Ерофеев В.Т., Богатова С.Н., Богатов А.Д., Казначеев С.В., Родин А.И. Биостойкие строительные композиты на смешанных вяжущих // Региональная архитектура и строительство. 2012. № 1. С. 32–38.
35. Erofeev V.T., Bogatova S.N., Bogatov A.D., Kaznacheev S.V., Rodin A.I. Biostable building composites with mixed binders. Regional’naya arkhitektura i stroitel’stvo. 2012. No. 1, pp. 32–38. (In Russian).
36. Ерофеев В.Т., Баженов Ю.М., Богатов А.Д. и др. Строительные материалы на основе отходов стекла: Монография. Саранск: Издательство Мордовского университета, 2005. 120 с.
36. Erofeev V.T., Bazhenov Yu.M., Bogatov A.D. et al. Stroitel’nyye materialy na osnove otkhodov stekla: monografiya [Construction materials based on glass waste: monograph]. Saransk: Mordovian University Publishing House, 2005. 120 p.
37. Калашников В.И., Ананьев С.В. Высокопрочные и особовысокопрочные бетоны с дисперсным армированием // Строительные материалы. 2009. № 6. С. 59–61.
37. Kalashnikov V.I., Ananyev S.V. High-strength and extra-high-strength concrete with dispersed reinforcement. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 59–61. (In Russian).

For citation: Erofeev V.T., Tarakanov O.V., Ananyev S.V., Lesnov V.V., Erofeeva I.V., Sanyagina Ya.A., Sidorov N.S., Ananyeva Y.S. The increasing еhe efficiency of fiber reinforced high-strength self-compacting and carcass concretes. Stroitel’nye Materialy [Construction Materials]. 2024. No. 3, pp. 15–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-15-24

To Build Quickly, Profitably, and Efficiently Ensuring Russia’s Technological Sovereignty

Number of journal: 3-2024
Autors:

Fotin O.V.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-11-14
УДК: 69.057

 

AbstractAbout AuthorsReferences
The advantage of frame buildings of socio-cultural purpose for the implementation of any social and commercial projects is noted. Proposals have been formulated to create a unified system of technical documentation that can be used by any designers, manufacturers of precast concrete and builders themselves for the entire construction complex of Russia. The main solutions of the RCD system (frame-link frame with diaphragms) are shown, examples of practical application of the RCD system are given. It is noted that the construction of buildings made of precast reinforced concrete, compared with monolithic construction, reduces the cost of construction by at least 20%; reduces construction time by more than half; reduces rebar consumption by at least 20%; reduces concrete consumption by at least 30%.
O.V. FOTIN, Сhief Designer of RKD System (This email address is being protected from spambots. You need JavaScript enabled to view it.)

OOO «VSKB named after A.A. Yakushev» (16, Off. 3, Yadrintseva Street, Irkutsk, 664009, Russian Federation)

1. Nikolaev S.V. Construction of panel-monolithic houses from factory-made house kits. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 10, pp. 10–16. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-10-10-16
2. Nikolaev S.V. Construction of low-rise housing from house sets of factory production. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 5, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-5-3-8
3. Fotin O.V. The system of RCD «Irkutsk frame» of multi-storey buildings and structures. Seismicheskoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2016. No. 1, pp. 44–50. (In Russian).
4. Rumyantsev E.V. The trends in prefabricated high rise housing construction: world and domestic experience. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 13–27. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-13-27
5. Krasinikova N.M., Nekrasov A.B., Minnihanova A.I. Positive aspects of the national project on labor productivity on the example of the Kazan DSK. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 5, pp. 19–21. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-5-19-21
6. Fotin O.V. Construction of multi-storey buildings from precast reinforced concrete. Zhilishnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 19–22. (In Russian). DOI: https://doi. org/10.31659/0044-4472-2022-10-19-22
7. Fotin O.V. Construction of precast reinforced concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 32–34. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-32-34
8. Sokolov N.S., Sokolov S.N., Sokolov A.N. The practice of construction in particularly cramped conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 41–47. (In Russian). DOI: https://doi. org/10.31659/0044-4472-2023-9-41-4
9. Krasinikova N.M., Antyshev D.G., Fathutdinov A.R., Kalmykov D.A., Nekrasov A.B. A new approach to warehousing finished products at precast concrete plants. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 7–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-7-9
10. Shembakov V.A. Innovation industrial technology of precast-monolithic frame developed by GC “Rekon-SMK” and used 20 years at the RF market. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-3-33-38
11. Sokolov N. S., Viktorova S.S., Fedorova T.G. Piles of increased bearing capacity. New in architecture, design of building structures and reconstruction: Materials of the VIII All-Russian (II International) Conference. Cheboksary. 2014, pp. 411–415. (In Russian).
12. Rumyantsev E.V., Shvetsova V.A. Development of a system for monitoring the hardening of prefabricated reinforced concrete joints at negative temperatures. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 4–15. (In Russian).
13. Dubynin N.V. From large-panel housing construction of the twentieth century. to the system of panel-frame housing construction of the XXI century. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 10, pp. 12–19. (In Russian).
14. Nikolaev S.V., Schreiber A.K., Etenko V.P. Panelframe housing construction – a new stage in the development of large-panel construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2. C. 3–7. (In Russian).

For citation: Fotin O.V. To build quickly, profitably, and efficiently ensuring Russia's technological sovereignty. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 11–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-11-14

Tasks and Prospects for the Development of the Russian Construction Industry

Number of journal: 3-2024
Autors:

Shembakov V.A.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-4-7
УДК: 693.95

 

AbstractAbout AuthorsReferences
The main requirements for modern housing are accessibility, quality and aesthetics. In construction, new requirements arise for the technology of manufacturing structures: a free layout with a ceiling height of 2.7 m or more; column pitch of 6 m or more; ceiling height of the first floor up to 8 m; a high degree of factory readiness and architectural aesthetics of the exterior walls. At the same time, it is necessary to ensure a reduction in the weight of structures per 1 m2 of building area and an increase in installation speed. All these requirements can be fulfilled by the Recon technology, known in the practice of the construction industry in Russia and neighboring countries, which produces pre-stressed floor slabs up to 7.65 m long and unstressed floor slabs up to 7.2 m or more; efficiency structures, internal walls (IW) and external walls (EW) on universal stands 3.6; 4; 5.2 m х 60, 90, 120, 128 m in automatic mode, starting with laying concrete using targeted feeding, automatic vibration of the stand surface, grout of the upper surface and automatic heating of the stand. It is important to note that during the hydration of cement stone, the concrete laid on a universal stand does not move either horizontally or vertically, thereby ensuring high quality and density of the product.
V.A. SHEMBAKOV, Head of GK “REKON-SMK”, General Director of ZAO “Rekon”, RF Honored Builder,Head of the Author ‘s Team for the development and implementation of SMK technology (This email address is being protected from spambots. You need JavaScript enabled to view it.)

ZAO “Rekon” (20a, Dorozhny Proezd, Cheboksary, 428003, Chuvash Republic, Russian Federation)

1. Nikolaev S.V. Construction of panel-monolithic houses from factory-made house kits. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 10, pp. 10–16. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-10-10-16
2. Sokolov B.S., Zenin S.A. Analysis of the regulatory base for designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10
3. Nikolaev S.V. Two-layer factory-made exterior panel for low-rise housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 3–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-3-10
4. Rumyantsev E.V. The trends in prefabricated high rise housing construction: world and domestic experience. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 13–27. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-13-27
5. Mikheev D.V., Guryev V.V., Dmitriev A.N., Bachurina S.S., Yakhkind S.I. Development of industrial civil engineering and standard design at the present stage. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 7, pp. 41–52. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-7-41-52
6. Shembakov V.A. Innovation industrial technology of precast-monolithic frame developed by GC “Rekon-SMK” and used 20 years at the RF market. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-3-33-38
7. Shembakov V.A. Possibilities of innovative industrial technology of prefabricated monolithic frame GC «Recon-SMK». Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-32-38
8. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
9. Shembakov V.A. Current industrial technology for manufacturing non-stressed and pre-stressed structures. Modernization of large-panel prefabrication plants. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 3, pp. 30–35. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-3-30-35

For citation: Shembakov V.A. Tasks and prospects for the development of the Russian construction industry. Stroitel'nye Materialy [Construction Materials]. 2024. No. 3, pp. 4–7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-4-7

Construction with Slate – Quick Solution to the Country’s Housing Problems

Number of journal: 1-2-2024
Autors:

Neyman S.M.,
Punenkov S.E.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-115-120
УДК: 621.315.613.4

 

AbstractAbout AuthorsReferences
General information about the state of the chrysotile cement industry in Russia and in the world since the beginning of the XX century and changes in recent decades is presented. The most intensive development of the industry is noted in Russia and the countries of the former USSR due to the largest reserves of chrysotile asbestos in these territories. The physical and technical properties of chrysotile cement products, due to which they have many advantages both in terms of operational reliability and economic attractiveness, are given. The high potential of chrysotile-cement materials in construction is justified. It is shown that the frame technology of SOVBI can provide a significant increase in demand for flat chrysotile cement sheets.
S.M. NEYMAN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.E. PUNENKOV2, Candidate of Sciences (Engineering), Chief Technologist (This email address is being protected from spambots. You need JavaScript enabled to view it..r)

1 NO «Hrizotilovaja Associacija» (35, build 1, Usacheva Street, 1, Moscow, 119048, Russian Federation)
2 PJSC “Uralasbest” (66, Uralskaya Street, Asbest, 624260, Russian Federation)

1. Guide to terrophazerite coating. Moscow: Printing house of the Moscow Council of Workers and Red Army Deputies. 1918.
2. Komarov Ju.T. 100th anniversary of the Bryansk asbestos-cement plant. Stroitel’nye Materialy [Construction Materials]. 2008. No. 9, pp. 34–35. (In Russian).
3. Zadiraka G.N. Roofless ventilated roofs “Ural” using chrysotile cement sheets. Stroitel’nye Materialy [Construction Materials]. 2008. No. 9, pp. 16–17. (In Russian).
4. Punenkov S.E., Kozlov Ju.S., Punenkov N.S. Dynamics and prospects for the development of the chrysotile-asbestos industry. Gorno-metallurgicheskaja promyshlennost’. 2023. No. 9–10, pp. 48–55. (In Russian).
5. Zhukov A.D., Nejman S.M., Radnaeva S.Zh. Operational durability of chrysotile-cement pipes. Vestnik MGSU. 2013. No. 3, pp. 127–134. (In Russian).
6. Nejman S.M., Popov K.N., Mezhov A.G. Study of the properties of chrysotile-cement roofing sheets of various service life. Stroitel’nye Materialy [Construction Materials]. 2011. No. 5, pp. 86–88. (In Russian).
7. Nejman S.M., Vezencev A.I., Kashanskij S.V. O bezopasnosti asbestocementnyh materialov i izdelij [On the safety of asbestos-cement materials and products]. Moscow: RIF «Strojmaterialy». 2006.
8. Elovskaja L.T., Shkarednaja S.A. Asbestos: myths and reality. Promyshlennye vedomosti. 2007. No. 5–6, p. 5. (In Russian).
9. Valjukov Е.A., Volchek I.Z. Proizvodstvo asbestocementnyh izdelij metodom jekstruzii [Production of asbestos-cement products by extrusion]. Moscow: Stroyizdat. 1975. 113 p.
10. Zhusupov K.K., Agubaev T.M., Punenkov S.E. Fiction and reality about chrysotile asbestos. Gorno-geologicheskij zhurnal. 2006. No. 6, pp. 13–16.
11. Ivanov V.V., Kochelaev V.A. Antiasbestovaja kampanija: prichiny i sledstvija [Anti-asbestos campaign: causes and consequences]. Asbest: NO «Hrizotilovaya associaciya», 2006. 39 p.
12. Razzokov S., Umarov T., Khakberdyev U., Neiman S. A new way of painting slate sheets on a sheet-forming machine. Research and engineering center “Uzstroy-materialLITI” LLC. (In Russian).
13. Patent SU747843A1. Smes’ dlya izgotovleniya listovyh oblicovochnyh dekorativnyh izdeliy [Mixture for the production of sheet facing decorative products]. Kolesnikov B.I., Komarov V.A., Nejman S.M. Declared 06.04.78. Published 15.07.80.
14. Lukin E.G., Rygaev D.V., Metelica R.V., Nejman S.M., Sobolev L.V. Silicate paint for chrysotile cement products made of domestic raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 7, pp. 49–57. (In Russian).

For citation: Neyman S.M., Punenkov S.E. Construction with slate – quick solution to the country's housing problems. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 115–120. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-115-120

https://www.traditionrolex.com/10