Log in

Aging of Adhesives of External Reinforcement Systems of Building Structures. Part 1. Investigation of the Significance of Influencing Factors

Number of journal: 4-2024
Autors:

Shakirov A.R.,
Suleimanov A.M.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-76-82
УДК: 691.87

 

AbstractAbout AuthorsReferences
External reinforcement systems using carbon composite materials are one of the modern methods of strengthening building structures. As the results of existing scientific research show, the component most susceptible to external factors in these systems is an epoxy adhesive. In the present work, experimental studies have been carried out in order to obtain data for the development of a standard method for accelerated assessment of the durability of building structures reinforced with external reinforcement systems with polymer composites. The importance of influencing factors such as: UV radiation; temperature; moisture and alkaline solution on the aging rate of adhesives for external reinforcement systems has been revealed. A step stress method is proposed to predict the creep of the initial and aged adhesive samples.
A.R. SHAKIROV, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. SULEIMANOV, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, 420043, Kazan, Russian Federation)

1. SP 164.1325800.2014. Usilenie zhelezobetonnykh konstruktsiy kompozitnymi materialami [Reinfor-cement of reinforced concrete structures with composite materials]. 2014. 70 p. (In Russian).
2. Lesovik R.S., Klyuev S.S. Expansion of reinforcement of yellow concrete columns corner fabric. Innovative technological materials; collection of doctors of the International Scientific and Practical Conference. Belgorod. October 11–12, 2011. Part 2, pp. 3–5. (In Russian).
3. Klyuev S.V., Rubanov V.G., Pavlenko V.I., Guryanov Yu.V., Ginzburg A.V. Calculation of carbon fiber reinforced building structures. Vestnik of the BSTU named after V.G. Shukhov. 2013. No. 5, pp. 54–56. (In Russian).
4. Shilin A.A., Pshenichny V.A., Kartuzov D.V. External reinforcement of reinforced concrete structures with composite materials. Moscow: JSC “Publishing House “Stroyizdat”. 2007. 181 p.
5. Bokarev S.A., Smerdov D.N. Experimental studies of bent reinforced concrete elements reinforced with composite materials. Izvestiya of higher educational institutions. Construction. 2010. No. 2, pp. 112–124. (In Russian).
6. Klyuev S.V. Strengthening and restoration of structures using carbon fiber-based composites. Beton i zhelezobeton. 2012. No. 3, pp. 23–26. (In Russian).
7. Ovchinnikov I.G., Valiev Sh.N., Ovchinnikov I.I., Zinoviev V.S., Umirov A.D. Issues of reinforcement of reinforced concrete structures with composites: Experimental studies of the features of reinforcement by composites of bent reinforced concrete structures. Internet-zhurnal «Naukovedenie». 2012. No. 4. http://naukovedenie.ru/PDF/13tvn412.pdf
8. Ovchinnikov I.I., Ovchinnikov I.G., Chesnokov G.V., Mikhaldykin E.S. Analysis of experimental studies on strengthening reinforced concrete structures with polymer composite materials. Part 1. Domestic experiments with static loading. Internet-zhurnal «Nauko-vedenie». 2016. Vol. 8. No. 3. http://naukovedenie.ru/PDF/24TVN316.pdf
9. Bonacci J.F., Maalej M. Externally bonded fiber-reinforced polymer for rehabilitation of corrosion damaged concrete beams. ACI Structural Journal. Vol. 97 (5), pp. 703–711.
10. Denvid Lau, Hoat Joen Pam. Experimental study of hybrid FRP reinforced concrete beams. Engineering Structures. 2010. Vol. 32. Iss. 12, pp. 3857–3865 https://doi.org/10.1016/j.engstruct.2010.08.028
11. Sólrún Lovísa Sveinsdóttir. Experimental research on strengthening of concrete beams by the use of epoxy adhesive and cement-based bonding material. School of Science and Engineering at Reykjavík University. Thesis in Civil Engineering for the degree of Master of Science. 2012. 108 p.
12. Benzarti K., Chataigner S., Quiertant M., Marty C., Aubagnac C. Accelerated ageing behaviour of the adhesive bond between concrete specimens and CFRP overlays. Construction and Building Materials. 2011. Vol. 25 (2), pp. 523–538. doi: 10.1016/j.conbuildmat.2010.08
13. Benzarti K., Quiertant M., Marty C., Chataigner S., Aubagnac C. Effects of accelerated ageing on the adhesive bond between concrete specimens and external CFRP reinforcements. Conference: advances in FRP composites in civil engineering. Berlin, Heidelberg. 2011 https://doi.org/10.1007/978-3-642-17487-2_84
14. Marc Quiertant, Karim Benzarti, Julien Schneider, Fabrice Landrin, Mathieu Landrin, et al. Effects of ageing on the bond properties of carbon fiber reinforced polymer/concrete adhesive joints: investigation using a modified double shear test. Journal of Testing and Evaluation. 2017. Vol. 45 (6). DOI: 10.1520/JTE20160587
15. Dalfré G.M., Parsekian G.A., Ferreira D.C. Degradation of the EBR-CFRP strengthening system applied to reinforced concrete beams exposed to weathering. Rev. IBRACON Estrut. Mater. 2021. Vol. 14. No. 2. e14208. https://doi.org/10.1590/S1983-41952021000200008
16. Nasser Al Nuaimi, Muazzam Ghous Sohail, Rami Hawileh, Jamal A. Abdalla, Kais Douier. Durability of reinforced concrete beams externally strengthened with cfrp laminates under harsh climatic conditions. Journal of Composites for Construction. Vol. 25. Iss. 2. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001113
17. Liu Shuai, Pan Yunfeng, Li Hedong. Durability of the bond between CFRP and concrete exposed to thermal cycles. Materials (Basel). 2019. Vol. 12 (3). 515. doi: 10.3390/ma12030515
18. Selivanova E.O., Smerdov D.N. Experimental studies of creep in composite materials reinforcing bent reinforced concrete elements / Selivanova E.O. Akademicheskii vestnik UralNIIproekt RAACS. 2017. No. 2 (33), pp. 95–99. EDN: ZAEKKP. (In Russian).
19. Smerdov D.N., Selivanova E.O. Studies of creep properties in elements of external reinforcement systems under prolonged stress. Polytransport systems: proceedings of the IX International Scientific and Technical Conference. Novosibirsk, November 17–18, 2016, pp. 53–56. EDN ZWVQHD. (In Russian).
20. Smerdov D.N. Experimental studies of the effect of temperature relaxation and stress of polymer composite materials working as part of bent reinforced concrete elements under prolonged exposure to loads. Vestnik of Tomsk State University of Architecture and Civil Engineering. 2022. Vol. 24. No. 1, pp. 150–163. (In Russian). DOI: 10.31675/1607-1859-2022-24-1-150-163. EDN: LPDOMM.
21. Leonova A.N., Sofyanikov O.D., Skripkina I.A. Features of reinforcement of metal structures with composite materials under the influence of an aggressive environment. Vestnik MGSU. 2020. Vol. 15. No. 4, pp. 496–509. (In Russian). DOI 10.22227/1997-0935.2020.4.496-509. EDN: HQPZJZ.
22. Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Influence of Temperature on tensile behavior of composite material used in strengthening reinforced concrete structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 5, pp. 46–53. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-5-46-53. EDN: ERPSZF

For citation:  Aging of adhesives of external reinforcement systems of building structures. Part 1. Investigation of the significance of influencing factors. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 76–82. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-76-82

Investigation of the Relationship between the Energy Characteristics of Phases (Reinforcing Fibers and Binder) and Wettability of Filler in Hybrid Polymer Composite

Number of journal: 4-2024
Autors:

Valiev A.I.,
Starovoitova I.A.,
Suleimanov A.M.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-68-75
УДК: 691.175

 

AbstractAbout AuthorsReferences
The study of issues related to the development of a scientifically substantiated method of obtaining hybrid polymer composites (containing more than one type of reinforcing continuous fiber) in order to improve the stiffness characteristics of the material is an urgent task of building materials science, allowing to expand the field of effective application of polymer composites for structural purposes. Wetting of reinforcing fibers with binders during the fabrication of composites largely determines the occurrence of adhesive bonding. In this study it is revealed that wettability correlates with energy characteristics of phases (reinforcing fibers and binder); dispersion parameters of free surface energy of carbon and glass fibers without oiling composition and apprette, parameters of free surface energy of fibers with oiling compositions and apprettes are determined; wetting of fibers by epoxy resins with determination of their surface tension, parameters of free surface energies at the boundary with air is studied; the question of the separation of fibers from air is investigated.
A.I. VALIEV1, Engineer, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. STAROVOITOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. SULEIMANOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kazan State University of Architecture and Civil Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 LLC “Rekon” (7B, Vasilchenko Street, Kazan, 420095, Russian Federation)

1. Kablov E.N. Strategic directions of development of materials and technologies of their processing for the period up to 2030. Aviatsionnye materialy i tekhnologii. 2012. No. S, pp. 7–17. (In Russian).
2. Valiev A.I., Shakirzyanov F.R., Suleymanov A.M., Nizamov R.K. Estimation of stress-strain state of hybrid polymer composites manufactured by vacuum infusion method. Izvestiya KSUAE. 2023. No. 4 (66), pp. 241–254. (In Russian). DOI: 10.52409/20731523_2023_4_241, EDN: QQUTHA
3. Khantimirov A.G., Abdrakhmanova L.A., Nizamov R.K., Khozin V.G. Wood-polymer composites based on polyvinyl chloride reinforced with basalt fiber Izvestiya KSUAE. 2022. No. 3 (61), pp. 75–81. (In Russian). DOI: 10.52409/20731523_2022_3_75. EDN: IHYITF
4. Salakhutdinov M.A., Kayumov R.A., Aripov D.N., Khanekov A.R. Numerical study of the bearing capacity of a composite I-shaped section beam of pultruded fiberglass profiles. Izvestiya KSUAE. 2022. No. 2 (60), pp. 15–23. (In Russian). DOI: 10.52409/20731523_2022_2_15. EDN: BHRXOY
5. Kayumov R.A., Shakirzyanov F.R., Gimranov L.R., Gimazetdinov A.R. Determination of the characteristics of a viscoelastic fiberglass model based on the results of bending square section pipes. Izvestiya KSUAE. 2022. No. 2 (60), pp. 37–44. (In Russian). DOI: 10.52409/20731523_2022_2_37. EDN: BYHQBR
6. Monticelli F.M., Ornaghi-Jr. H.L., Cioffi M.O.H., Worwald H.D.K. Effect of inter-surface adhesion in carbon fiber/glass fiber hybrid epoxy composite on mode II fracture toughness. Mekhanika kompozitnykh materialov. 2022. Vol. 58. No. 2, pp. 335–352. (In Russian). DOI: https://doi.org/10.22364/mkm.58.2.06
7. Khozin V.G., Gizdatullin A.R., Mirsayapov I.T., Yarullin R.R., Borovskikh I.V. Combined action of epoxy composite and protective coating with cement concrete in the adhesive contact zone. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 24–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-24-31. EDN: QKBKDO
8. Valiev A.I., Suleimanov A.M. Hybrid polymer composites for structural purposes. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-51-57. EDN: CFFVYI
9. Deng F., Lu W., Zhao H., Zhu Y., Kim B.S., Chou T.W. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon. 2011. No. 49, pp. 1752–1757. https://doi.org/10.1016/j.carbon.2010.12.061
10. J.-K. Kim, Y.-W. Mai. Engineered interfaces in fiber reinforced composites. Elsevier. 1998. 401 p. https://doi.org/10.1016/B978-0-08-042695-2.X5000-3
11. Nuriel S., Liu L., Barber A.H., Wagner H.D. Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters. 2005. No. 404, pp. 263–266. https://doi.org/10.1016/j.cplett.2005.01.072
12. Danilov V.E., Korolev E.V., Ayzenshtadt A.M., Strokova V.V. Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens–Wendt–Rabel–Kaelble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-66-72
13. Starostina I.A., Stoyanov O.V. Development of methods for evaluation of surface acid-base properties of polymeric materials. Vestnik of the Kazan Technological University. 2010. No. 4, pp. 58–68. (In Russian).
14. Van Oss C.J., Chaudhury M.K., Good R.J. Monopolar surfaces. Advances in Colloid and Interface Science. 1987. Vol. 28, pp. 35–64. https://doi.org/10.1016/0001-8686(87)80008-8
15. Thomason J.L. Nagel U., Yang L., Bryce D. A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Composites Part A: Applied Science and Manufacturing. 2019. Vol. 121, pp. 56–63. https://doi.org/10.1016/j.compositesa.2019.03.013
16. Thomason J. A review of the analysis and characterisation of polymeric glass fibre sizings // Polymer Testing. 2020. Vol. 85. 106421. DOI: 10.1016/j.polymertesting.2020.106421
17. David B., Liu Y., Thomason J. An investigation of fibre sizing on the interfacial strength of glass-fibre epoxy composites. Conference: ECCM18 – 18th European Conference on Composite Materials. At: Athens, Greece. 24 June 2018. 8 p.
18. Demina N.M., Mukhanova I.E. Aqueous epoxy dispersions are effective film formers for. glass fiber. Review. Klei. Germetiki. Tekhnologii. 2017. No. 7, pp. 36–41 (In Russian). EDN: YZGKBX
19. Starovoitova I.A., Drogun A.V., Zykova E.S., Semenov A.N., Khozin V.G., Firsova E.B. Colloidal and chemical stability of aqueous dispersions of epoxy resins. Stroitel’nye Materialy [Construction Materials]. 2014. No. 10, pp. 74–77 (In Russian). EDN: SVNCDR
20. Zhang Z., Fan L., Zhang J., Fei G., Xu S., Yao Y., Gao H. Glass fiber sizing agent and preparation method and application thereof. Jushi group co ltd. Patent CN 110294599 (A), 01.10.2019
21. Patent RF 2699100. Sposob polucheniya vodnoi epoksidnoi dispersii [Method of preparation of aqueous epoxy dispersion]. Semenov A.N., Starovoitova I.A. Declared 01.04.2019. Published 03.09.2019 (In Russian).
22. Markova E.O., Demina N.M. Modern glass and carbon fibers for reinforcement of polymer composites. Monthly international scientific journal «International science project». (Turku, Finland). 2018. No. 21, pp. 26–28. (In Russian).

For citation: Valiev A.I., Starovoitova I.A., Suleimanov A.M. Investigation of the relationship between the energy characteristics of phases (reinforcing fibers and binder) and wettability of filler in hybrid polymer composite. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 68–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-68-75

Interfacial Interaction and Fatigue Behavior of Asphalt Mastics

Number of journal: 4-2024
Autors:

Dudareva T.V.,
Krasotkina I.A.,
Gorbatova V.N.,
Gordeeva I.V.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-61-67
УДК: 691.16

 

AbstractAbout AuthorsReferences
Rheological characteristics of five road bitumens with different group composition and penetration at 25оС from 60 to 115х0.1 mm and asphalt binders based on them with volume content of filler (mineral powder of MP1 grade) – 0.275 (mass ratio bitumen: filler – 1:1) have been determined in the range from 30 to -10оС on dynamic shear rheometer. The influence of temperature and frequency on the parameter of interfacial interaction K-B-G* and thickness of adsorbed layer of original and thermal oxidative aging samples of asphalt mastic has been investigated. It is shown that in all samples K-B-G* decreases with decreasing temperature and increasing test frequency. A decrease in K-B-G* and adsorbed layer thickness in mastics after aging was observed in the case of bitumen with Gestel colloidal index CI=0.46–0.53, defined as CI=(S+A)(/R+Ar), and was stability of K-B-G* and adsorbed layer thickness in the case of bitumen with CI=0.61. No relationship was found between group chemical composition of bitumen and adsorbed layer thickness in original mastics. In aged mastic the greater thickness of adsorbed layer has samples based on bitumen with higher content of asphaltenes. The peculiarities of fatigue behavior of bitumen and mastic in the linear amplitude sweep test were investigated. The correlation between the thickness of the adsorbed layer and the angle of slope of the curves of dependence of the maximum shear stress (τmax) on the complex modulus (G*) was noted for aged samples.
.V. DUDAREVA, Senior Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. KRASOTKINA, Senior Researcher,
V. N. GORBATOVA, Junior Researcher,
I.V. GORDEEVA, Candidate of Sciences (Engineering)

Semenov Federal Research Center for Chemical Physics RAS (4, Kosygina Street, Moscow, 119991, Russian Federation

1. Lu Y., Wang L.B. Molecular dynamics simulation to characterize asphalt–aggregate interfaces. In: Ebook Characterization and Behavior of Interfaces. Atlanta, Georgia, USA. 2008, pp. 125–130. https://doi.org/10.3233/978-1-60750-491-7-125
2. Kоролев И.В. Модель строения битумной пленки на минеральных зернах в асфальтобетоне //Известия высших учебных заведений. Строительство и архитектура. 1981. Т. 8. С. 63–67.
2. Korolev I.V. Model of the structure of a bitumen film on mineral grains in asphalt concrete. Izvestiya of the higher educational institutions. Construction and architecture. 1981. Vol. 8, pp. 63–67. (In Russian).
3. Guo M., Tan Y., Yu J., Hou Y., Wang L. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy. Materials and Structures. 2017. Vol. 50. 141. https://doi.org/10.1617/s11527-017-1015-9
4. Zhang J., Airey G.D., Grenfell J.R. A. Experimental evaluation of cohesive and adhesive bond strength and fracture energy of bitumen-aggregate systems. Materials and Structures. 2016. Vol. 49, pp. 2653–2667. https://doi.org/10.1617/s11527-015-0674-7
5. Chen H., Bahia H.U. Modelling effects of aging on asphalt binder fatigue using complex modulus and the LAS test. International Journal of Fatigue. 2021. Vol. 146. 106150. https://doi.org/10.1016/j.ijfatigue.2021.106150
6. Xu W., Qiu X., Xiao S., Hong H., Wang F., Yuan J. Characteristics and mechanisms of asphalt–filler interactions from a multi-scale perspective. Materials. 2020. Vol. 13. 2744. https://doi.org/10.3390/ma13122744
7. Alfaqawi R.M., Airey G.D., Presti D.Lo., Grenfell J. Effects of mineral fillers on bitumen mastic chemistry and rheology. In book: Transport Infrastructure and Systems. 2017, pp. 359–364. Publisher: proceedings of the Aiit International Congress on Transport Infrastructure and Systems (Tis 2017). Rome, Italy. 10–12 April 2017. https://doi.org/10.1201/9781315281896-48
8. Tanakizadeh A., Shafabakhsh Gh. Viscoelastic characterization of aged asphalt mastics using typical performance grading tests and rheological-micromechanical models. Construction and Building Materials. 2018. Vol. 188, pp. 88–100. https://doi.org/10.1016/j.conbuildmat.2018.08.043
9. Li F., Yang Y. Understanding the temperature and loading frequency effects on physicochemical interaction ability between mineral filler and asphalt binder using molecular dynamic simulation and rheological experiments. Construction and Building Materials. 2020. Vol. 244. 118311. https://doi.org/10.1016/j.conbuildmat.2020.118311
10. Guo M., Tan Y. Interaction between asphalt and mineral fillers and its correlation to mastics’ viscoelasticity. International Journal of Pavement Engineering. 2019. Vol. 22 (1), pp. 1–10 DOI: 10.1080/10298436.2019.1575379
11. Clopotel C.S., Bahia H. The effect of bitumen polar groups adsorption on mastics properties at low temperatures. Road Materials and Pavement Design. 2013. Vol. 14, pp. 38–51. https://doi.org/10.1080/14680629.2013.774745
12. Chen M., Javilla B., Hong W., Pan C., Riara M., Mo L., Guo M. Rheological and interaction analysis of asphalt binder, mastic and mortar. Materials. 2019. Vol. 12 (1). 128. https://doi.org/10.3390/ma12010128
13. Wu W., Jiang W., Yuan D., Lu R., Shan J., Xiao J., Ogbon A.W. A review of asphalt-filler interaction: mechanisms, evaluation methods, and influencing factors. Construction and Building Materials. 2021. Vol. 299. 124279. https://doi.org/10.1016/j.conbuildmat.2021.124279
14. Palierne J.F. Linear rheology of viscoelastic emulsions with interfacial-tension. Rheologica Acta. 1990. Vol. 29. No. 3, pp. 204–214. DOI: https://doi.org/10.1007/BF01331356
15. Wang D., Yi J., Feng D. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system. Scientific World Journal. 2014. Vol. 7. 819083. https://doi.org/10.1155/2014/819083
16. Qiu X., Xiao S., Yang Q. et al. Meso-scale analysis on shear failure characteristics of asphalt-aggregate interface. Materials and Structures. 2017. Vol. 50. 209. https://doi.org/10.1617/s11527-017-1075-x
17. Johnson C.M. Estimating asphalt binder fatigue resistance using an accelerated test method. 2010. University of Wisconsin – Madison. Open Dissertations and Theses. 2010. URL: http://digital.library.wisc.edu/1793/46799
18. AASHTO Designation: T391-20. Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. URL: https://uwmarc.wisc.edu/files/linearamplitudesweep/AASHTO%20T391-20.pdf
19. Методика измерений группового химического состава тяжелых нефтепродуктов методом жидкостно-адсорбционной хроматографии с градиентным вытеснением. Уфа, 2014. 18 с.
19. Metodika izmereniy gruppovogo khimicheskogo sostava tyazhelykh nefteproduktov metodom zhidkostno-adsorbtsionnoy khromatografii s gradiyentnym vytesneniyem [Methodology for measuring the group chemical composition of heavy petroleum products using liquid adsorption chromatography with gradient displacement]. Ufa. 2014. 18 p. (In Russian).
20. Gaestel C., Smadja R., Lamminan K.A. Contribution à la connaissance des propriétés des bitumes routiers. Rev. Gé Nérale des Routes Aérodromes. 1971. Vol. 466, pp. 85–97.
21. Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science. 2009. Vol. 145, pp. 42–82. https://doi.org/10.1016/j.cis.2008.08.011
22. Spreadsheet for analysis of linear amplitude sweep Test_V1.57 URL: https://uwmarc.wisc.edu/linear-amplitude-sweep.php

For citation: Dudareva T.V., Krasotkina I.A., Gorbatova V.N., Gordeeva I.V. Interfacial interaction and fatigue behavior of asphalt mastics. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 61–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-61-67

Facade Panels with Integrated Clinker Products

Number of journal: 4-2024
Autors:

Orlovich R.B.,
Gorshkov A.S.,
Shangina N.N.,
Kharitonov A.M.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-55-60
УДК: 624.016

 

AbstractAbout AuthorsReferences
The paper covers current trends in the development of facade systems. Modern innovative hinged panels made of glass fiber reinforced concrete and polyurethane foam with integrated clinker products are considered. An analysis of the defects identified during the inspection of the panels was carried out. Possible mechanisms of their damage are described. The most likely cause of damage to clinker products integrated into panels are tensile and shear stresses resulting from differences in temperature deformations of clinker and glass fiber reinforced concrete. An analysis of the stress state of these materials at positive and negative temperatures was performed. The results of experimental studies are presented. Installing a damping layer of deformable material might be the way to compensate the stresses between clinker products and glass fiber reinforced concrete. An analysis of the stress state of the connection of ceramic tiles with polyurethane foam is given. It is shown that due to the significant difference in their temperature deformations, a concentration of shear stresses is observed in the contact zone, resulting in delamination of the tiles. The paper discusses the potential implication of the described panels and their possible further improvement.
R.B. ORLOVICH1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.S. GORSHKOV2, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.N. SHANGINA3, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. KHARITONOV4, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC «Georekonstruktsiya» (4, Izmailovskiy Avenue, Saint-Petersburg, 190005, Russian Federation)
2 Saint Petersburg State University of Industrial Technologies and Design (18, Bolshaya Morskaya Street, Saint-Petersburg, 191186, Russian Federation)
3 LLC «AGIO» (108, Embankment of the Fontanka river, Saint-Petersburg, 190013, Russian Federation)
4 Saint Petersburg State University of Architecture and Civil Engineering (4, 2-nd Krasnoarmeiskaya Street, Saint-Petersburg, 190005, Russian Federation)

1. Kania T., Derkach V., Nowak R. Testing crack resistance of non-load-bearing ceramic walls with door openings. Materials. 2021. Vol. 14. No. 6. DOI: 10.3390/ma14061379
2. Derkach V. Numerical studies of the coefficient of the degree of pinching of hollow-core precast slabs in stone walls. Contemporary Issues of Concrete and Reinforced Concrete. 2019. No. 11, pp. 25–35. DOI: 10.35579/2076-6033-2019-11-02
3. Nowak R., Kania T., Derkach V., Halaliuk A., Orłowicz R., Jaworski R., Ekiert E. Strength parameters of clay brick walls with various directions of force. Materials. 2021. Vol. 14. No. 21. DOI: 10.3390/ma14216461
4. Derkach V.N., Gorshkov A.S., Orlovich R.B. Problems of crack resistance of wall filling of frame buildings of cellular concrete blocks. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 52–56. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-52-56 (In Russian).
5. Orlovich R.B., Gorshkov А.S., Derkach V.N., Zimin S.S., Grawit M.N. Causes of damage to masonry after restoration. Stroitel’stvo i rekonstruktsiya. 2022. No. 1, pp. 48–58. (In Russian) https://doi.org/10.33979/2073-7416-2022-99-1-48-58
6. Orlovich R.B., Gorshkov A.S., Zimin S.S. Application of stones with high voidity in the facing layer of multilayer walls. Magazine of Civil Engineering. 2013. No. 8 (43), pp. 14–23. (In Russian). DOI: 10.5862/MCE.43.3
7. Ishchuk M.K., Ishchuk E.M., Ayzyatulin H.A., Cheremnykh V.A. Defects of external walls with a facing layer of hollow bricks. Promyshlennoye i grazhdanskoye stroitel’stvo. 2022. No. 4, pp. 29–35. (In Russian). DOI: 10.33622/0869-7019.2022.04.29-35
8. Ishchuk M.K. Causes of defects in external walls with a facing layer of brickwork. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2008. No. 3, pp. 28–31. (In Russian).
9. Ishchuk M.K. Analysis of the stress-strain state of the masonry facing layer of external walls. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2008. No. 4, pp. 23–28. (In Russian).
10. Ishchuk M.K. Accounting for the joint work of brickwork of the front layer of external walls and the floor slab. Promyshlennoye i grazhdanskoye stroitel’stvo. 2018. No. 6, pp. 50–56. (In Russian).
11. Panchenko L.A., Erizhokova E.S. Glass fiber reinforced concrete in thin-walled structures. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2019. No. 4, pp. 70–76. (In Russian). DOI: 10.34031/article_5cb1e65c9f1f72.39954168
12. Kondratyeva N.V., Golovatyuk M.A. Study of the technical characteristics of glass fiber reinforced concrete. Gradostroitel’stvo i arkhitektura. 2023. Vol. 13. No. 1 (50), pp. 82–91. DOI: 10.17673/Vestnik.2023.01.11
13. Minko N.I., Bessmertny V.S., Zdorenko N.M., Bondarenko M.A., Isaenko E.E., Tarasova E.E., Makarov A.V., Cherkasov A.V. Environmental aspects of using broken glass for the production of glass concrete. Steklo i keramika. 2023. Vol. 96. No. 6 (1146), pp. 30–40. (In Russian). DOI: 10.14489/glc.2023.06.pp. 030-040
14. Tran Y.D.T., Zenitova L.A., Hoang T.D., Do T.H., Cuong V.T. Thermal characterizations of polymer composite materials polyurethane foam-chitin. ChemChemTech. 2023. Vol. 66. No. 6, pp. 111–122. DOI: 10.6060/ivkkt.20236606.6719
15. Efimov B.A., Ushakov A.Yu., Tyakina A.M., Minaeva A.M. Structure and thermophysical characteristics of gas-filled polymers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 81–85. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-81-85
16. Gorshkov A.S., Vatin N.I., Datsyuk T.A., Bezru-kov A.Yu., Nemova D.V., Kakula P., Viitanen A. Album of technical solutions for the use of thermal insulation products made of polyurethane foam in construction residential, public and industrial buildings. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2014. No. 5 (20), pp. 71–441. (In Russian).
17. Shangina N., Kharitonov A. Glass fibre reinforced concrete as a material for large hanging ceiling designs in underground station restorations. Concrete in the Low Carbon Era: Proceedings of the International Conference. University of Dundee. 9–11 July 2012, pp. 823–831.
18. Smirnova O.M., Kharitonov A.M. Strength and strain-stress properties of fiber concrete with macro-fiber on the basis of polyolefins. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 44–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-766-12-44-48
19. Grinfeldi G.I., Gorshkov A.S., Vatin N.I. Tests results strength and thermophysical properties of aerated concrete block wall samples with the use of polyurethane adhesive. Advanced Materials Research. 2014. Vol. 941–944, pp. 786–799. DOI: 10.4028/www.scientific.net/AMR.941-944.786
20. Gorshkov A.S., Grinfeld G.I., Mishin V.E., Nikifo-rov E.S., Vatin N.I. Increasing the thermal uniformity of walls made of cellular concrete products through the use of polyurethane glue in masonry. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 57–64. (In Russian).
21. Derkach V. The Influence of temperature impact on the strength of adhesion of polyurethane glue-foam with masonry products. E3S Web of Conferences. Brest. 2020. 02006. DOI: 10.1051/e3sconf/202021202006

For citation: Orlovich R.B., Gorshkov A.S., Shangina N.N., Kharitonov A.M. Facade panels with integrated clinker products. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 55–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-55-60

Clinker High-Hollow Ceramic Stones: Prospects for Technology and Application

Number of journal: 4-2024
Autors:

Uzhakhov K.M.,
Kotlyar A.V.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-49-54
УДК: 691.42:553.61

 

AbstractAbout AuthorsReferences
A substantiation is given for the prospects of using clinker large-format ceramic stones of increased hollowness with a water absorption of less than 3% in construction. It has been shown that due to the high strength of the ceramic material itself (more than 100–150 MPa), ceram-ic stones will have the necessary strength – more than 10–15 MPa in terms of compressive strength. Due to the increased void content with as many rows of voids as possible per 100 mm length of the ceramic stone and a smaller thickness of the internal walls, the stones will have reduced thermal conductivity. Due to the low porosity of clinker ceram-ics as a material and the use of appropriate masonry mortars, masonry made of clinker stones will be guaranteed not to be vapor permeable, which will significantly increase the service life of buildings. When us-ing certain technological techniques, namely the application of cham-fers, relief, engobes on the front faces, large-format high-hollow clinker stones can also play the role of facing products, which will significantly increase their consumer attractiveness. With an increase in the hollow-ness of stones, the costs of mass preparation, drying and firing of products are proportionally reduced, which significantly reduces their cost. It has been shown that the “ideal” raw material for producing clinker large-format ceramic stones can be stone-like clay raw materials – argillite-like clays, argillites, shales and their transitional varieties. When grinding them and preparing molding masses, due to the for-mation of a certain grain composition and the introduction of corrective microadditives, it is possible to obtain molding masses with optimal pre-firing technological properties and a clinker shard with water ab-sorption of up to 3% and a compressive strength of up to 200 using one raw material. MPa, bending strength up to 50 MPa.
K.M. UZHAKHOV1, Candidate of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. KOTLYAR2, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ingush State University, (7, I.B. Zyazikova Avenue, Magas, Republic of Ingushetia, 386001, Russian Federation)
2 Don State Technical University (1, Gagarina Square, Rostov-on-Don 344003, Russian Federation)

1. Zabalueva T.R. Istoriya arkhitektury i stroitel’noi tekhniki [History of architecture and construction technology]. Moscow: Eksmo. 2007. 736 р.
2. Kotlyar V.D., Terekhina Yu.V., Lapunova K.A. Technology and special features for the production of large-format ceramic stones based on of gaize rocks. Sovremennye tendentsii v stroitel’stve, gradostroitel’stve i planirovke territorii. 2023. No. 4, pp. 46–58. (In Russian). DOI: https://doi.org/10.23947/2949-1835-2023-2-4-46-58
3. Semenov A.A. Some trends in the development of the ceramic wall materials market in Russia. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-4-5
4. Kotlyar V.D., Ustinov A.V., Kovalev V.Yu., Terekhi-na Yu.V., Kotlyar A.V. Ceramic stones of compression molding based on flasks and coal preparation waste. Stroitel’nye Materialy [Construction Materials]. 2013. No. 4, pp. 44–48. (In Russian).
5. Semenov A.A. Russian market of ceramic bricks. Development trends and prospects. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-4-5
6. Bozhko Yu.A., Kotlyar V.D., Rogochaya M.V. Comparative effectiveness of using wall products with a density of less than 800 kg/m3 in construction. Inzhenerno-stroitel’nyj vestnik Prikaspiya. 2015. No. 4 (14), pp. 46–51. (In Russian).
7. Pastushkov P.P., Pavlenko N.V., Smirnov S.I. Research of the influence of various factors on the thermal conductivity of large-format vertically perforated clay blocks. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 53–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-53-57
8. Kotlyar V.D., Uzhakhov K.M., Kotlyar A.V., Terekhina Yu.V. Clinker brick: standardization, properties, application. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-4-8
9. Berkman A.S. Poristaya pronitsaemaya keramika [Porous permeable ceramics]. Moscow: Stroyizdat. 1969. 170 р.
10. Voropaeva L.V., Varlamov V.P., Ezerskii V.A. On the issue of comparative evaluation of porous ceramic products with different volumetric mass and strength. Collection of works of VNIIstrom. Moscow. 1981. No. 45 (73), pp. 135–140. (In Russian).
11. Dmitriev K.S. Development of a method for designing raw material mixtures in aerated ceramic technology. Cand. Diss. (Engineering). Sankt-Petersburg. 2024. 167 p. (In Russian).
12. Zavadskiy V.F., Putro N.B., Maksimova Yu.S. Porous building ceramics. Stroitel’nye Materialy [Construction Materials]. 2004. No. 2, pp. 50–51. (In Russian).
13. Yashchenko R.A., Kotlyar V.D. The use of straw as a burn-out additive in high-performance ceramics. Collection of materials of the XVIII International Scientific and Technical Conference «Current problems of construction, construction industry and industry». Tula. 2017. Vol. 1, pp. 235–237. (In Russian).
14. Rogochaya M.V., Galkina K.S., Kotlyar V.D. Use of carbonate flasks and coal slurries for the production of ceramic stones. Collection of materials of the XVIII International Scientific and Technical Conference «Current problems of construction, construction industry and industry». Tula. 2017. Vol. 1, pp. 141–143.
15. Uzhakhov K.M., Kotlyar A.V. Clinker large-format ceramic stones with a honeycomb structure based on mudstones. Collection of materials of the III All-Russian scientific conference «Building materials science: present and future». Moscow. Vol. 1, pp. 308–311. https://mgsu.ru/resources/izdatelskaya-deyatelnost/izdaniya/izdaniya-otkr-dostupa/. (In Russian).
16. Kabirov R.R., Garipov L. N., Faseeva G. R., Nafikov R. M., Lapuk S. E., Zakharov Yu. A. Prototyping of ultrasonic die for extrusion of ceramic brick. Glass and Ceramics. 2017. Vol. 90. No. 3 (74), pp. 16–22.
17. Kabirov R.R., Faseeva G.R., Zakharov Yu.A. Calculation of operating parameters of an ultrasonic die for extrusion of building ceramics. Vestnik of the Kazan Technological University. 2017. Vol. 20. No. 3, pp. 40–43. (In Russian).
18. Uzhakhov K.M., Kotlyar A.V. Raw material base of the Republic of Ingushetia for the production of clinker bricks. Proceedings of the III All-Russian Scientific and Practical Conference with international participation «Actual issues of modern construction of industrial regions of Russia». Novokuznetsk. 2022, pp. 225–228. (In Russian).
19. Orlova M.E. Research of the Nekrasovskoye mudstone deposit as a raw material for the production of clinker ceramic tiles. Engineering Vestnik of the Don. Online publication. 2024. No. 3. (In Russian). http://www.ivdon.ru/ru/magazine/archive/n3y2024/9072
20. Kotlyar A.V., Stolboushkin A.Yu. Evaluation of the Dakhovsky mudstones of the Western Caucasus for the production of building ceramics. Proceedings of the III All-Russian scientific and practical conference with international participation «Topical issues of modern construction of industrial regions of Russia». Novokuznetsk. 2022, pp. 147–151. (In Russian).
21. Kotlyar A.V., Nebezhko Yu.I., Bozhko Yu.A., Yashchen-ko R.A., Nebezhko N.I., Kotlyar V.D. Clinker brick based on screenings crushing of sandstones of the Rostov region. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 9–15. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-783-8-9-15

For citation: Uzhakhov K.M., Kotlyar A.V. Clinker high-hollow ceramic stones: prospects for technology and application. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 49–54. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-49-54

Assessing Directions for Reducing Energy and Carbon Intensity of Manufacturing Large-Format Ceramic Stones

Number of journal: 4-2024
Autors:

Zakharov A.I.,
Smirnov S.I.,
Cherkasskaya S.V.,
Guseva T.V.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-43-48
УДК: 504.062

 

AbstractAbout AuthorsReferences
The article analyses the experience of enhancing energy efficiency and reducing greenhouse gas emissions in the ceramic production. Calculations and assessments are made using the example of the industrial site of Wienerberger Brick LLC, located in the Vladimir region, where large-format ceramic stones are produced. Authors emphasize that ceramic production is a branch of energy and carbon intensive industrial sectors, for which in various countries and regions, programmes and projects aimed at reducing energy consumption and emissions of greenhouse gases are developed and implemented. The article presents estimated global average data and data obtained as a result of carbon intensity benchmarking conducted within the course of reviewing of the Russian national Reference Document on Best Available Techniques “Ceramic manufacturing industry”) ITS 4-2023. Authors analyse the energy efficiency enhancement programme implemented by Wienerberger Brick LLC, and calculate energy-related emissions of greenhouse gases for 2015–2022. They demonstrate that the enterprise managed to achieve a significant reduction in energy and carbon intensity. It attained parameters that are significantly lower than the industry average, as well as the so-called indicative greenhouse gas emissions indicators established to encourage Russian enterprises to implement green projects. Authors conclude that experience described can be replicated by other companies, including those applying for government support measures for projects aimed at the implementation of Best Available Techniques, enhancement of energy efficiency and reduction of greenhouse gases emissions.
A.I. ZAKHAROV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.I. SMIRNOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.V. CHERKASSKAYA3, Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. GUSEVA3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Federal State Budgetary Educational Institution of Higher Education Dmitry Mendeleev University of Chemical Technology of Russia (125047, Russia, Moscow, Miusskaya sq, 9)
2 Limited Liability Company «Wienerberger Brick» (107140, Russia, Moscow, Rusakovskaya st., 13)
3 Federal State Autonomous Institution «Research Institute «Environmental Industrial Policy Center» (115054, Russia, Moscow, Stremyannyi alleyway, 38)

1. Rattle I., Gailani A., Taylor P.G. Decarbonization strategies in industry: going beyond clusters. Sustainability Science. 2024. Vol. 19, pp. 105–123. DOI: 10.1007/s11625-023-01313-4
2. Bashmakov I.A. The Scale of Efforts Needed to Decarbonize Global Industry. Fundamental’naya i prikladnaya klimatologiya. 2022. Vol. 8. No. 2, pp. 151–174. (In Russian). DOI: 10.21513/2410-8758-2022-2-151-174
3. Ceramic Roadmap to 2050. Continuing our path towards climate neutrality. URL: https://www.ceramicroadmap2050.eu/chapters/continuing-our-path-towards-climate-neutrality/
4. Jajal P., Tibrewal K., Mishra T., Venkataraman C. Economic assessment of climate mitigation pathways (2015–2050) for the brick sector in India. Climate Change Signals and Response. 2019. DOI: 10.1007/978-981-13-0280-0
5. Roadmap for a greenhouse gas neutral brick and roof tile industry in germany. transition of the german brick and roof tile industry to greenhouse gas neutrality by 2050, 2020. URL: https://cerameunie.eu/media/2987/roadmap-2050-bricks-roof-tile-full-version-de.pdf
6. IPCC guidelines for national greenhouse gas inventories. Volume 3. Revised in 2023. Industrial Processes and Product Use. URL: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol3.html
7. Sazedj S., Morais A.J., Jalali S. Comparison of embodied energy and carbon dioxide emissions of brick and concrete based on functional units. London, 2021. URL: https://core.ac.uk/download/pdf/62468024.pdf
8. Ceramic manufacturing industry ITS 4-2023: Reference document on best available techniques / Federal Agency for Technical Ruegulation and Metrology. Official edition. Moscow: BAT Bureau, 2023. 319 p. (In Russian).
9. First CO2-neutral brick production line launched in Kortemark. Ceramic World Web. URL: https://ceramicworldweb.com/en/news/wienerberger-first-co2-neutral-brick-production-line-launched-kortemark
10. Skobelev D.O., Stepanova M.V. Energeticheskii menedzhment: prochtenie 2020 [Energy Management: Interpretation 2020]. Moscow: Kolorit, 2020. 92 p. URL: http://ecoline.ru/wp-content/uploads/energy-management-2020.pdf
11. Green construction in Russia. Energosberezhenie. 2021. No. 3 (8). URL: https://nplus1.ru/material/2023/12/11/green-building. (In Russian).
12. Bashmakov I.A., Potapova E.N., Borisov K.B., Lebedev O.V., Guseva T.V. Decarbonization of the cement industry and development of environmental and energy management systems. Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-817-9
13. Zakharov A.I., Golub O.V., Sanzharovskiy A.Yu., Mikhailidi D.Kh. Ceramic manufacturing industry in russia. the role of the reference document on best available techniques as a modernization tool. Tekhnika i tekhnologioya silikatov. 2023. Vol. 30. No. 3, pp. 241–251. (In Russian).
14. Dobrokhotova M.V., Matushanskiy A.V. Implementation of best available techniques the purpose of technological transformation of industry in the context of the energy transition. Economika ustoichivogo razvitiya. 2022. No. 2 (50), pp. 63–68. (In Russian).
15. Skobelev D.O. Industrial policy for enhancing resource efficiency as a tool for achieving sustainable development goals. Journal of New Economy. 2020. No. 4. (In Russian). DOI: 10.29141/2658-5081-2020-21-4-8
16. Zazhigalkin A.V., Dobrokhotova M.V., Cherkasskaya S.V. Greenhouse gases and best available techniques. Standardization infrastructure. Standarty i kachestvo. 2023. No. 5, pp. 44–48 (In Russian).
17. Skobelev D.O., Volosatova A.A. Developing a scientific rationale for a system of criteria for green financing of projects aimed at the technological renewal of Russian industry. Economika ustoichivogo razvitiya. 2021. No. 1 (45), pp. 181–188. (In Russian).
18. Guseva T.V., Volosatova A.A., Tikhonova I.O. Directions for improving the taxonomy of green projects for sustainable industrial development. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2022. Vol. 24. No. 5 (109), pp. 28–35. (In Russian).

For citation: Zakharov A.I., Smirnov S.I., Cherkasskaya S.V., Guseva T.V. Assessing directions for reducing energy and carbon intensity of manufacturing large-format ceramic stones. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 43–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-43-48

Use of Industrial Waste to Improve the Performance Properties of Ceramic

Number of journal: 4-2024
Autors:

Yatsenko N.D.,
Yatsenko A.I.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-37-42
УДК: 691.421

 

AbstractAbout AuthorsReferences
Industrial waste, with an in-depth study of its resource capacity, physico-chemical and technological properties, is a valuable raw material for construction ceramics. The possibility of replacing high-quality clays in technologies for producing clarified ceramic bricks and effective wall ceramics using high-calcium waste generated during water purification by liming in thermal power engineering, chemical and other enterprises has been established. The obtained physicochemical patterns of formation on their basis of the structure and properties of a ceramic composite provide a scientific basis for the use of typical waste, in these studies, dust from electric precipitators of cement production. The role of aluminum-containing waste generated during the electrolysis of molten aluminum in regulating the technological properties of the masses and firing properties of clinker bricks has been revealed, which allows the use of low-grade clays for its production. Scientific research and recommendations on the use of various industrial wastes not only for the purpose of recycling, but also for the use of their valuable properties associated with the chemical composition, behavior in heat treatment, reactivity, the possibility of strengthening due to the formation of a controlled structure of the material, help slow down the process of decline reserves of high-quality clay raw materials.
N.D. YATSENKO, Doctor of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.I. YATSENKO, Engineer (yacencko This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Russian State Polytechnic University (Novocherkassk Polytechnic Institute) named after M.I. Platov (132, Prosveshcheniya Street, Novocherkassk, 346428, Rostov region, Russian Federation)

1. Chanturiya V.A., Gorlova O.E. Development of technological innovations for deep and complex processing of technogenic raw materials. Izvestiya of the TulSU. Nauki i Zemli. 2020. Iss. 1, pp. 159–168. (In Russian).
2. Makarov D.V., Melkonyan R.V., Suvorova O.V. Prospects for the use of industrial waste to produce ceramic building materials. Gornyi informatsionno-analiticheskii byulleten. 2016. No. 5, pp. 254–281. (In Russian).
3. Fomenko A.I., Kaptushina A.G., Gryzlov V.S. Expansion of the raw material base for building ceramics. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 25–27. (In Russian).
4. Yatsenko N.D., Vil’bitskaya N.A., Yatsenko A.I., Stovba A.I., Shmatov V.V. Industrial waste and its role in the formation of the structure of effective wall ceramics. Science and innovation – modern concepts: Sat. scientific Articles. International scientific forum. Moscow. 2020. Vol. 1, pp. 113–119. (In Russian).
5. Yatsenko N.D., Vil’bitskaya N.A., Yatsenko A.I. Features of the formation of the phase composition and properties of high-calcium low-density ceramics based on clay raw materials of various chemical and mineralogical compositions. Izvestiya of higher educational institutions. North Caucasus region. Technical science. 2021. No. 2, pp. 75–80. (In Russian). DOI: 10.17213/1560-3644-2021-2-75-80
6. Pavlov V.F. Method of involving industrial waste in the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2003. No. 8, pp. 28–30. (In Russian).
7. Buravchuk N.I., Guryanova O.V., Parinov I.A. Use of technogenic raw materials in ceramic technology. Open Ceramics. 2024. Vol. 18. 100578. https://doi.org/10.1016/j.oceram.2024.100578
8. Abdrakhimova E.S. Use of waste from the fuel and energy complex – burnt rocks and chromite ore enrichment waste in the production of porous aggregates based on a liquid-glass composition. Ugol’. 2019. No. 7, pp. 67–69. (In Russian). DOI: http://dx.doi.org/10.18796/0041-5790-2019-7-67-69
9. Fedorova N.V., Shaforost D.A. Prospects for the use of fly ash from thermal power plants in the Rostov region. Teploenergetika. 2015. No. 1, pp. 53–58. (In Russian). DOI: 10.1134/S0040363615010038
10. Stolboushkin A.Yu., Akst D.V., Fomina O.A. Phase composition and properties of ceramic matrix composites with the addition of ferrovanadium slag. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 17–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-17-24
11. Kotlyar V.D., Ustinov A.V., Kovalev V.Yu. Ceramic stones of compression molding based on flasks and coal preparation waste. Stroitel’nye Materialy [Construction Materials]. 2013. No. 4, pp. 44–46. (In Russian).
12. Yatsenko N.D., Vil’bitskaya N.A., Yatsenko A.I. Formation of the structure and properties of effective wall ceramics based on metallurgical waste. Izvestiya of higher educational institutions. North Caucasus region. Technical science. 2019. No. 2, pp. 43–47. (In Russian). DOI: 10.17213/0321-2653-2019-2-43-47
13. Yatsenko N.D., Vil’bitskaya N.A., Yatsenko A.I., Popova L.D. Phase composition and properties of the low-temperature structural ceramics in the clay-calcium containing. Materials Science Forum. Materials and Technologies in Construction and Architecture II. 2019. Kislovodsk, pp. 331–335. (In Russian).
14. Luginina I.G. Khimiya i khimicheskaya tekhnologiya neorganicheskikh vyazhushchikh materialov [Chemistry and chemical technology of inorganic binders]. Belgorod: Publishing house of the BSTU named after V.G. Shukhov. 2004. 240 р.
15. Buruchenko A.E., Musharapova S.I. Construction ceramics using loams and aluminum production waste. Stroitel’nye Materialy [Construction Materials]. 2010. No. 12, pp. 28–30. (In Russian).
16. Abdrakhimov V.Z. Application of aluminum-containing waste in the production of ceramic materials for various purposes. Novye ogneupory. 2013. No. 1, pp. 13–23. (In Russian). https://doi.org/10.17073/1683-4518-2013-1-13-23

For citation: Yatsenko N.D., Yatsenko A.I. Use of industrial waste to improve the performance properties of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 37–42. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-37-42

Getting a Face Brick of Light Shades Based on Marl

Number of journal: 4-2024
Autors:

Bozhko Yu.A.,
Partyshev M.Yu.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-32-36
УДК: 691.421

 

AbstractAbout AuthorsReferences
The article reflects the topic of the shortage of raw materials for the production of face bricks of light colors. This problem has particularly affected producers in the European part of Russia due to the cessation of clay supplies from the territory of Donbass. Therefore, one of the relevant directions is the search for alternative sources of raw materials. The accumulated experience and laboratory tests have shown the possibility of producing light bricks using marl. As components of the ceramic mass, clays from the Vladimirovsky deposit in the Rostov region of the East Kazakhstan region, charge and marl KO-2 were also accepted from deposits in the Rostov region. By changing the percentage of marl and refractory clay and the firing temperature, it is possible to adjust the color of the fired products, as well as water absorption, average density, strength of products and their shrinkage. Industrial tests conducted on the basis of two brick factories in Rostov-on-Don and the region showed positive results. The use of marl ranged from 40 to 70% of the total weight. Clay from the East Kazakhstan region Vladimirovskoye deposit in the amount of 30 to 60%, respectively, acted as a plastic component. The brick turned out to be light beige to light yellow in color. One of the factories launched the “Svetly” brick into mass production. The material fully meets the requirements of GOST 530–2012. Thus, the problem of the shortage of light clays can be solved by using alternative raw materials – marl. The introduction of 50 to 70% of the mass into the composition is particularly effective. Preliminary calculations show the profitability of the technology by saving raw materials up to 20–25%, while increasing the aesthetic characteristics of the front brick.
Yu.A. BOZHKO1, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.Yu. PARTYSHEV2 (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Brick-Design LLC (344030, Rostov-on-Don, Russian Federation)
2 Individual entrepreneur (Novocherkassk, Russian Federation)

1. Semenov A.A. Some trends in the development of the ceramic wall materials market in Russia. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-4-5
2. Avgustinik A.I. Keramika [Ceramics]. Leningrad: Stroyizdat. 1975. 592 p.
3. Distanov U.G. Kremnistyye porody SSSR [Siliceous rocks of the USSR]. Kazan: Tatar Book Publishing House. 1976. 411 p.
4. Kotlyar V.D., Talpa B.V. Moldings – promising raw materials for wall ceramics. Stroitel’nye Materialy [Construction Materials]. 2007. No. 2, pp. 31–33. (In Russian).
5. Kotlyar V.D. Classification of siliceous opoka-like rocks as raw materials for the production of wall ceramics Stroitel’nye Materialy [Construction Materials]. 2009. No. 3, pp. 36–39. (In Russian).
6. Kotlyar V.D., Terekhina Yu.V. Classification features and peculiarities of opal-cristobalite opoka-like rocks as raw materials for wall ceramics. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 25–30. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-25-30
7. Rokhvarger E.L. Stroitel’naya keramika [Construction ceramics]. Moscow: Stroyizdat. 1976. 493 p.
8. Salakhov A.M. Keramika dlya stroiteley i arkhitektorov. [Ceramics for builders and architects]. Kazan: Paradigm, 2009. 296 p.
9. Kotlyar V.D. Stenovaya keramika na osnove kremnistykh opal-kristobalitovykh porod – opok [Wall ceramics based on siliceous opal-cristobalite rocks – opok]. Rostov n/D: RIC RGSU. 2011. 278 p.
10. Bozhko Yu.A., Ovdun D.A., Partyshev M.Yu. Synthetic wollastonite is a promising additive in the production of light-colored facing ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 25–29. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-25-29
11. Bozhko Yu.A. Soft molded brick based on siliceous and clay components. Izvestiya of universities. Investments. Construction. Real estate. 2018. No. 3, pp. 54–60. (In Russian).
12. Fernandez J. Material Architecture: Emergent materials for innovative buildings and ecological construction. Architectural Press. 2006. 332 p.
13. Barabanshchikov Yu.G. Stroitel’nyye materialy i izdeliya [Construction materials and products]. Moscow: Publishing center “Academy”, 2008. 416 p.
14. AÏtcin P.C. 4 - Supplementary cementitious materials and blended cements. Science and Technology of Concrete Admixtures. 2016. pp. 53–73. https://doi.org/10.1016/B978-0-08-100693-1.00004-7
15. Fröhlich F. The Opal-CT nanostructure. Journal of Non-Crystalline Solids. 2020. Vol. 533. 119938. https://doi.org/10.1016/j.jnoncrysol.2020.119938

For citation: Bozhko Yu.A., Partyshev M.Yu. Getting a face brick of light shades based on marl. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 32–36. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-32-36

Preparation of Ceramic Press Powder Based on Aluminosilicate Clay Raw Materials and Ash and Slag Waste from Thermal Power Plants Synthesized by Vitreous Microspheres

Number of journal: 4-2024
Autors:

Gur'eva V.A.,
Doroshin A.V.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-27-31
УДК: 691.42:665.6

 

AbstractAbout AuthorsReferences
The possibility of using 3-component charges in the production of wall ceramics by semi-dry pressing from aluminosilicate loams in a composition with ash and slag waste from CHP plants, cullet and silica gel obtained by the sol-gel method is considered. The physicochemical processes and phase formations occurring in the production of ceramic materials using WCO at the firing stage have been studied. It was found that the introduction of fluxes in the form of cullet and silica gel reduces the temperature of heat treatment and are intensifiers of mineral neoplasms that increase mechanical strength compared with samples made from 2-component compositions «loam + ASW».
V.A. GUR’EVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. DOROSHIN2, Graduate Student

1 Orenburg State University (13, Pobedy Avenue, 460018, Orenburg, Russian Federation)
2 Buzuluk Humanitarian and Technological Institute (branch) of OSU (112, Komsomolskaya Street, 461040, Buzuluk, Russian Federation)

1. Egorova A.D., Kolesov M.V., Mikhailov D.A. Construction ceramics from raw materials from Yakutia, modified with cullet. Fundamentals of construction materials science: Collection of reports of the International Online Congress. October 06–11, 2017. Belgorod: BSTU named after V.G. Shukhov, pp. 975–980. EDN: YLPFUD (In Russian).
2. Gur’eva V.A., Doroshin A.V., Dubinetskiy V.V. Research in influence of modifying additives on frost resistance and properties of ceramics. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-762-8-52-56
3. Zhernovaya N.F., Doroganov E.A., Zhernovoy F.E., Stepina I.N. Study of materials obtained by sintering in the “clay – cullet” system. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2013. No. 1, pp. 20–23. EDN: PUOLAT (In Russian).
4. Eromasov R.G., Nikiforova E.M., Stupko T.V. et al. Efficiency of using quartz-containing man-made products for the production of ceramic building materials. Fundamental’nyye issledovaniya. 2013. No. 4–1, pp. 24–29. EDN: PUUHJN (In Russian).
5. Lazareva Ya.V., Kotlyar A.V., Yashchenko R.A., Orlova M.E. The influence of cullet on the sintering ability of argillite-like clays. Resursoenergoeffektivnyye tekhnologii v stroitel’nom komplekse regiona. 2018. No. 9, pp. 114–118. EDN: XRHTPV. (In Russian).
6. Patent for invention RU 2240294 C2. Sposob izgotovleniya stenovykh keramicheskikh izdeliy [Method for manufacturing wall ceramic products] Gabidullin M.G., Rakhimov R.Z., Garipov R.R., Mavlyuberdinov A.R., Faezov R.U., Zaripov T.I., Valiullin R.G., Gorbach R.M., Arslanov Sh.Yu. Application No. 2003104540/03. Dated 14/02/2003. (In Russian).
7. Balkevich V.L., Belyakov A.V., Safronova T.A. Synthesis of disaggregated fine mullite powder by chemical methods. Steklo i keramika. 1985. No. 5, pp. 25–27. (In Russian).
8. Kumar Saha S., Pramamik P. Aqueous sol-gel synthesis of mullite powder by using aluminium oxalate and tetraethoxysilane. Journal of Materials Science. 1994. Vol. 29 (13), pp. 3425–3429. DOI: 10.1007/BF00352044
9. Phulé P.P., Wood T.E. Ceramics and glasses, sol-gel synthesis of. Encyclopedia of Materials: Science and Technology (Second Edition). 2001, pp. 1090–1095. https://doi.org/10.1016/B0-08-043152-6/00201-1
10. Mararakin M.D., Vartanyan M.A., Makarov N.A., Sazhin I.V. Synthesis of sol-gel by the method of additives of eutectic composition for ceramics based on silicon carbide. Steklo i keramika. 2017. No. 9, pp. 25–27. (In Russian).
11. Guryeva V.A., Doroshin A.V. Sol-gel technology in the production of wall ceramics using technogenic raw materials using the example of ash and slag waste from thermal power plants. In the collection: Traditions and innovations in construction and architecture. Construction and construction technologies. Collection of articles of the 78th All-Russian Scientific and Technical Conference. Edited by M.V. Shuvalova, A.A. Pishchuleva, A.K. Strelkova. Samara. 2021, pp. 876–883. (In Russian).
12. Delitsyn L.M., Vlasov A.S. The need for new approaches to the use of ash from coal-fired thermal power plants. Teploenergetika. 2010. No. 4, pp. 49–55. EDN: MSUSOH (In Russian).
13. Kara-Sal B.K.O., Irgit B.B., Saryg-Ool S.M.O., Saryglar A.Sh. Increasing the porosity of ceramic wall materials with the introduction of cattle feces into the mixture. Vestnik of the Tuvan State University. No. 3. Technical and physical and mathematical sciences. 2022. No. 1 (90), pp. 6–16. (In Russian). DOI: 10.24411/2221-0458-2022-90-06-16. EDN: FKTFJR

For citation: Gur'eva V.A., Doroshin A.V. Preparation of ceramic press powder based on aluminosilicate clay raw materials and ash and slag waste from thermal power plants synthesized by vitreous microspheres. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 27–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-27-31

Assessment and Characteristics of Molding Masses Based on Loam during Production Soft Molded Ceramic Brick

Number of journal: 4-2024
Autors:

Nebezhko Yu.I.,
Kotlyar V.D.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-20-26
УДК: 691.421:552.524

 

AbstractAbout AuthorsReferences
опThe article discusses the issues of assessing the properties of loams and selecting the composition of molding compounds based on them for the production of ceramic bricks using the soft molding method. It is noted that for soft molding technology, to date, no recommendations have been developed for the evaluation of raw materials with the establishment of relationships between the composition, technological properties, molding features and aesthetic features of the front edges of products. According to technological features, the method of soft molding of ceramic bricks is conventionally divided into 4 methods: manual molding, accelerated molding, pressing method and vibration molding method. The results of our work made it possible to identify the main indicators when assessing clay raw materials and to develop the basic principles for selecting the composition of molding masses. Thus, the critical compression stress and the degree of deformation of the workpieces should be on average 0.2–0.8 kg/cm2 and 3–5 units, respectively. In this case, the molding masses should have the minimum possible water content and stickiness, have minimal air shrinkage (less than 6–7%), and be slightly or moderately sensitive to drying. An algorithm has been developed for selecting molding compounds, including determination, in addition to generally accepted indicators, such as the degree of deformation and critical compressive stress at different water contents, specific penetration resistance, determination of the optimal electrolyte content, and stickiness. For typical loams, the dependences of the degree of deformation of the samples and the critical compressive stress on the water content of the molding masses are shown, as well as the influence of electrolytes on the water content. It has been shown that the introduction of electrolytes can significantly reduce the water content of molding masses. It is noted that the genesis of loams, their variable composition and the frequent presence of undesirable harmful impurities predetermined the situation that high-quality loams that meet the necessary requirements are quite rare and the only alternative can be the selection of compositions of molding compounds based on correct scientific and methodological approach.сание
Yu.I. NEBEZHKO, Engineer, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.D. KOTLYAR, Doctor of Sciences (Engineering), Professor, Head of the Department of Construction Materials (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Don State Technical University (1, Gagarina Square, Rostov-on-Don, 344003, Russian Federation)

1. Meskhi B.Ch., Bozhko Yu.A., Terekhina Yu.V., Lapunova K.A. Brick-design and its main elements. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-783-8-47-51
2. Bozhko Y.A, Lapunova K.A., Ovdun D.A. Evaluation of the Aesthetic and Decorative Properties of Ceramic Bricks. XV International Scientific Conference «Interagromash 2022». Lecture Notes in Networks and Systems. 2023. Vol. 575. https://doi.org/10.1007/978-3-031-21219-2_344.
3. Gerard C.J. Lynch. Brickwork: History, technology and practice: Vol. 2. Routledge, 2015. 220 р. ISBN 1317741293, 9781317741299
4. Bozhko Y.A, Lapunova K.A. Application of facing brick of soft moulding in modern architecture. Dizain. Materialy. Tekhnologiya. 2018. No. 1, pp. 61–65. (In Russian).
5. Fedosov S.V., Kenewei E. Lapidus A.A. In search of innovative materials for mass construction of low-rise buildings in the Republic of Chad. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 72–78. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-72-78
6. Frolov V.T. Litologiya. Kniga 2. [Lithology. Book 2]. Moscow: Moscow State University. 1993. 432 p.
7. Industry standard 21-78–88 «The raw material is clay (rocks) for the production of ceramic bricks and stones. Technical requirements. Test methods». Moscow: All-Union Scientific Research Institute of Building Materials. 1988. 59 p. (In Russian).
8. Kondratenko V.A. Keramicheskie stenovye materialy: optimizatsiya ikh fiziko-tekhnicheskikh svoistv i tekhnologicheskikh parametrov proizvodstva [Ceramic wall materials: optimization of their physical and technical properties and technological production parameters]. Moscow: Composite. 2005. 509 p.
9. Nebezhko Yu.I., Lapunova K.A. Features of the front surface of soft molded ceramic bricks. III All-Russian Scientific Conference «Construction Materials Science: Present and Future». Moscow. 2023. Vol. 1, pp. 210–216. (In Russian).
10. Kotlyar V.D., Yavruyan Kh.S., Bozhko Y.A., Nebezhko N.I. Features of the production of ceramic facing brick soft molding on the basis of opoka-like rocks. Stroitel’nye Materialy [Construction Materials]. 2019. No. 12, pp. 18–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-777-12-18-22
11. Nebezhko Yu.I. Structural features of ceramic masses based on loams and refractory clays in the production of soft molded bricks. XVIII International Scientific and Technical Conference of Young Scientists, dedicated to the memory of Professor V.I. Kalashnikov «Theory and practice of increasing the efficiency of building materials». Penza. 2023. Vol. 1, pp. 150–157. (In Russian).
12. Guzman P.Ya. Khimicheskaya tekhnologiya keramiki [Chemical technology of ceramics]. Moscow: Stroymaterialy. 2003. 496 p.
13. Händle F. Extrusion in ceramics. Springer Berlin Heidelberg New York. 2007. 470 p.
14. Stolboushkin A.Yu., Fomina O.A, Shevchenko V.V., Berdov G.I., Druzhinin M.S., Kambalina I.V. Study of the operational properties of ceramic bricks with a matrix structure. Stroitel’nye Materialy [Construction Materials]. 2017. No. 9, pp. 9–13. (In Russian).
15. Kotlyar A.V., Stolboushkin A.Yu. Evaluation of clay shales from coal waste heaps in the Rostov region for the production of building ceramics. VI International Scientific and Practical Conference «Quality. Technologies. Innovation». Novosibirsk. 2023. 1 CD-ROM, pp. 4–11. (In Russian).
16. Gur’eva V.A., Doroshin A.V. Application of theoretical calculations in the selection of ceramic masses for the production of ceramic bricks using the example of the Buguruslan deposit. All-Russian scientific and practical conference with international participation «Current problems of integration of science and education in the region». Buzuluk. 2023. Vol. 1, pp. 250–255. (In Russian).
17. Kotlyar V.D., Nebezhko N.I., Bozhko Yu.A. Study of clay-carbonate types of opoka-like rocks as raw materials for producing light-colored clinker bricks. I All-Russian scientific conference dedicated to the 90th anniversary of the outstanding materials scientist, academician of the RAASN Yu.M. Bazhenov «Construction materials science: present and future». Moscow. 2020. Vol. 1, pp. 265–269. (In Russian).
18. Sizova A.V., Shoeva T.E., Storozhenko G.I. Shock wave activation of clay raw materials in the production of ceramic materials. 5th International Scientific and Practical Conference «Resource Conservation and Ecology of Building Materials, Products and Structures». Kursk. 2022. Vol. 1, pp. 264–267. (In Russian).
19. Ezersky V.A. Clinker. Technology and properties. Stroitel’nye Materialy [Construction Materials]. 2011. No. 4, pp. 79–81. (In Russian).

For citation: Nebezhko Yu.I., Kotlyar V.D. Assessment and characteristics of molding masses based on loam during production soft molded ceramic brick. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 20–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-20-26

USE of Thermal Power Engineering Waste to Reduce the Average Density of Ceramic Wall Materials with a Matrix Structure

Number of journal: 4-2024
Autors:

Stolboushkin A.Yu.,
Isterin E.V.,
Fomina O.A.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-13-19
УДК: 691.421.4:658.567.1:621.3

 

AbstractAbout AuthorsReferences
It has been presented the results of studies on reducing the average density of ceramic wall materials through the use of ash granules. The chemical, granulometric, and mineral compositions of clay raw materials and fly ash are given. It has been considered the compositions of ceramic charges with different contents of thermal power waste and sample preparation techniques. In the first case, mechanical mixing of the charge components was used, in the second case, granulation of the components and creation of a shell on the surface of the granules was used. The physical and mechanical properties of ceramic samples produced by both methods are presented. It has been established that an increase in the fly ash content in the charge leads to a decrease in the average density and compressive strength of ceramic samples. The use of the developed method for producing ceramic materials increases the strength characteristics of the samples, which makes it possible to increase the content of the ash component to 70–80 wt. % in the composition of the charge. It has been shown that the content of fly ash in the charge is more than 60 wt. % leads to an increase in water absorption of more than 20%, which practically indicates the absence of sintering processes in ash granules. Prospects and main directions for further research are formulated.
A.Yu. STOLBOUSHKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. ISTERIN1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.A. FOMINA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)
2 Mechanical Engineering Research Institute of the RAS (4, Maly Kharitonievsky side Street, Moscow, 101990, Russian Federation)

1. Zhidko E.A., Avdeeva T.V., Ermolenko M.S. Main directions and principles of waste-free and waste-free technologies. Informatsionnye tekhnologii v stroitel’nykh, sotsial’nykh i ekonomicheskikh sistemakh. 2021. No. 2 (24), pp. 29–33. (In Russian).
2. Kotlyar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Silicate Brick Based on Ash Microspheres and Lime. Stroitel’nye materialy [Construction Materials]. 2018. No. 9, pp. 17–21. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-17-21
3. Saibulatov S.J. Introduction of ceramic wall materials ash production at JSC Tolyatti brick factory. Stroitel’nye materialy [Construction Materials]. 2002. No. 1, pp. 2–3. (In Russian).
4. Stolboushkin A.Yu., Isterin E.V. Research of ash-entrainment of the west Siberian CHPP as a potential raw material for ceramics production. Quality. Technologies. Innovations: Materials of the VI International Scientific and Practical Conference. Novosibirsk. 2023, pp. 96–103. (In Russian).
5. Ovcharenko G.I., Fomichev Yu.Yu., Franzen V.B., Viktorov A.V., Samsonov A.Yu., Streltsov I.A. Features of the technology of silicate brick from high-calcium ash CHPP. Polzunovsky Vestnik. 2011. No. 1, pp. 156–162. (In Russian).
6. Stolboushkin A.Yu. Perspective direction of development of building ceramic materials from low-grade stock. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 24–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-24-28
7. Ariskina R.A., Mikhailova E.V., Sukorina A.V., Salakhova A.M. Experience in the use of technogenic waste in the production of ceramic materials. Vestnik of the University of Technology. 2017. No. 15, pp. 37–41. (In Russian).
8. Vatin N.I., Petrosov D.V., Kalachev A.I., Lakhtinen P. Application of ash and ash and slag waste in construction. Magazine of Civil Engineering. 2011. No. 4, pp. 16–21. (In Russian).
9. Saibulatov S.J. Zolokeramicheskie stenovye materialy [Ceramic wall materials made of ash]. Alma-Ata: Nauka. 1982. 292 p.
10. Gagarin V.G., Kozlov V.V. Requirements for heat protection and energy efficiency in the project of the updated SNiP «Thermal protection of Buildings». Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 8, pp. 2–6. (In Russian).
11. Kotlyar V.D., Kozlov A.V., Kotlyar A.V. High-efficiency wall ceramics based on porous-hollow silicate aggregate. Nauchnoe obozrenie. 2014. No. 10, pp. 392–395. (In Russian).
12. Shlegel I.F. The current situation in construction requires the restoration of GOST on the face brick. Stroitel’nye Materialy [Construction Materials]. 2010. No. 7, pp. 53–59. (In Russian).
13. Semenov A.A. Some trends in the development of the ceramic wall materials market in Russia. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-4-5
14. Davidyuk A.N., Nesvetaev G.V. Effective Materials and Structures to solve the Problem of Energy Saving of Buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 3, pp. 16–21. (In Russian).
15. Gaishun E.S., Yavruyan H.S., Kotlyar V.D. Technology for the production of highly efficient ceramic stones based on coal dump processing products. Theory and practice of improving the efficiency of building materials: Materials of the International Scientific and Technical Conference. Penza. 2018, pp. 18–26. (In Russian).
16. Stolboushkin A.Yu., Berdov G.I., Vereshchagin V.I., Fomina O.A. Ceramic wall materials with matrix structure based on non-sintering stift technogenic and natural raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 19–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2016-740-8-19-24
17. Patent RF 2593832. Sposob izgotovleniya stenovykh keramicheskikh izdelii [Method of making ceramic wall raisins]. Ivanov A.I., Stolboushkin A.Yu., Storozhenko G.I. Declared 08.06.2015. Published 10.08.2016. (In Russian).
18. Tas-ool L.H., Yanchat N.N., Choksum J.E. Aluminosilicate Microspheres of Ash Traps of a Thermal Power Plant in Kyzyl. Vestnik of Tuva State University. 2012. No 3, pp. 33–37. (In Russian).

For citation: Stolboushkin A.Yu., Isterin E.V., Fomina O.A. Use of thermal power engineering waste to reduce the average density of ceramic wall materials with a matrix structure. Stroitel’nye Materialy [Construction Materials]. 2024. No. 4, pp. 13–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-13-19

Low Capacity Brick Factories

Number of journal: 4-2024
Autors:

Gurov N.G.,
Gurov R.N.,
Storozhenko G.I.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-6-9
УДК: 691.4:553.61

 

AbstractAbout AuthorsReferences
The article outlines the concept of construction of seasonal plants of small and medium capacity with proposals to complete them exclusively with domestic equipment and economic justification of profitability of such enterprises. It should be noted that, contrary to popular opinion, the idea of building small and medium capacity plants, including seasonal operation, has proven to be quite viable and reasonable for a number of southern and central regions of Russia and, in the future, for the new regions of Novorossiya, where agriculture is the main type of activity. This is due to climate, population density, building traditions and many other factors. In the foreign press, small factories are mentioned not only in terms of special products, but also as branches of large enterprises for the development of small deposits of unique clay raw materials, on the basis of which the production of facade building ceramics is organized.
N.G. GUROV1, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.N. GUROV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
G.I. STOROZHENKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Southern Research Institute of Building Materials (105, build 1, Nansena Street, Rostov-on-Don, 344038, Russian Federation)
2 Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN) (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)

1. The KERAMTEX conference enters its third ten-year round: the flight is normal! Stroitel’nye Materialy [Construction Materials]. 2023. No. 9, pp. 24–29. (In Russian).
2. Semenov A.A. Some trends in the development of the ceramic wall materials market in Russia. Stroitel’nye Materialy [Construction Materials]. 2022. No. 4, pp. 4–5. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-801-4-4-5
3. Khavkin A.Y., Berman R.Z. Brick plants of small capacity with application of the technology of “hard” extrusion. Stroitel’nye Materialy [Construction Materials]. 2000. No. 4, pp. 18–19. (In Russian).
4. Zhenzhurist I.A. Problems of the enterprises of building ceramics of small capacity. Stroitel’nye Materialy [Construction Materials]. 2000. No. 7, pp. 2–4. (In Russian).
5. Frolov A.V. New technology of brick firing in TESCA furnaces. Stroitel’nye Materialy [Construction Materials]. 1999. No. 9, pp. 30. (In Russian).
6. New firing technologies. Reality and prospects. Stroitel’nye Materialy [Construction Materials]. 1998. No. 2, pp. 10. (In Russian).
7. Kunavin M.M. Calculation methodology of the firing mode of thermally massive ceramic products. Steklo i keramika. 1996. No. 9, pp. 16. (In Russian).
8. Shlegel I.F., Makarov S.G., Shulga S.S., Sapelnikov S.N., Bagaeva L.A. Blade extruder “Lopex” as an alternative to screw presses. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 40–46. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-40-46.
9. Yumasheva E.I. Innovative technologies for brick plants of medium and small capacity. Stroitel’nye Materialy [Construction Materials]. 2011. No. 4, pp. 50–52. (In Russian)
10. KOMAS: 25 years complex technologies of ceramic brick thermal treatment. Stroitel’nye Materialy [Construction Materials]. 2017. No. 4, pp. 25–26. (In Russian).
11. Shlegel I.F., Shayevich G.Y., Astafiev V.A., Karabut L.A. Industrial installation “Cascade-13” for clay preparation. Stroitel’nye Materialy [Construction Materials]. 2005. No. 10, pp. 34–36. (In Russian).
12. Storozhenko G.I., Boldyrev, G.V. Experience of brick plants of a semi-dry pressing with effective mass preparation of a clay raw material. Stroitel’nye Materialy [Construction Materials]. 2011. No. 2, pp. 2–4. (In Russian).

For citation: Gurov N.G., Gurov R.N., Storozhenko G.I. Low capacity brick factories. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 6–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-6-9

https://www.traditionrolex.com/10