Investigation of the Relationship between the Energy Characteristics of Phases (Reinforcing Fibers and Binder) and Wettability of Filler in Hybrid Polymer Composite

Number of journal: 4-2024
Autors:

Valiev A.I.,
Starovoitova I.A.,
Suleimanov A.M.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-68-75
УДК: 691.175

 

AbstractAbout AuthorsReferences
The study of issues related to the development of a scientifically substantiated method of obtaining hybrid polymer composites (containing more than one type of reinforcing continuous fiber) in order to improve the stiffness characteristics of the material is an urgent task of building materials science, allowing to expand the field of effective application of polymer composites for structural purposes. Wetting of reinforcing fibers with binders during the fabrication of composites largely determines the occurrence of adhesive bonding. In this study it is revealed that wettability correlates with energy characteristics of phases (reinforcing fibers and binder); dispersion parameters of free surface energy of carbon and glass fibers without oiling composition and apprette, parameters of free surface energy of fibers with oiling compositions and apprettes are determined; wetting of fibers by epoxy resins with determination of their surface tension, parameters of free surface energies at the boundary with air is studied; the question of the separation of fibers from air is investigated.
A.I. VALIEV1, Engineer, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. STAROVOITOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.M. SULEIMANOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kazan State University of Architecture and Civil Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 LLC “Rekon” (7B, Vasilchenko Street, Kazan, 420095, Russian Federation)

1. Kablov E.N. Strategic directions of development of materials and technologies of their processing for the period up to 2030. Aviatsionnye materialy i tekhnologii. 2012. No. S, pp. 7–17. (In Russian).
2. Valiev A.I., Shakirzyanov F.R., Suleymanov A.M., Nizamov R.K. Estimation of stress-strain state of hybrid polymer composites manufactured by vacuum infusion method. Izvestiya KSUAE. 2023. No. 4 (66), pp. 241–254. (In Russian). DOI: 10.52409/20731523_2023_4_241, EDN: QQUTHA
3. Khantimirov A.G., Abdrakhmanova L.A., Nizamov R.K., Khozin V.G. Wood-polymer composites based on polyvinyl chloride reinforced with basalt fiber Izvestiya KSUAE. 2022. No. 3 (61), pp. 75–81. (In Russian). DOI: 10.52409/20731523_2022_3_75. EDN: IHYITF
4. Salakhutdinov M.A., Kayumov R.A., Aripov D.N., Khanekov A.R. Numerical study of the bearing capacity of a composite I-shaped section beam of pultruded fiberglass profiles. Izvestiya KSUAE. 2022. No. 2 (60), pp. 15–23. (In Russian). DOI: 10.52409/20731523_2022_2_15. EDN: BHRXOY
5. Kayumov R.A., Shakirzyanov F.R., Gimranov L.R., Gimazetdinov A.R. Determination of the characteristics of a viscoelastic fiberglass model based on the results of bending square section pipes. Izvestiya KSUAE. 2022. No. 2 (60), pp. 37–44. (In Russian). DOI: 10.52409/20731523_2022_2_37. EDN: BYHQBR
6. Monticelli F.M., Ornaghi-Jr. H.L., Cioffi M.O.H., Worwald H.D.K. Effect of inter-surface adhesion in carbon fiber/glass fiber hybrid epoxy composite on mode II fracture toughness. Mekhanika kompozitnykh materialov. 2022. Vol. 58. No. 2, pp. 335–352. (In Russian). DOI: https://doi.org/10.22364/mkm.58.2.06
7. Khozin V.G., Gizdatullin A.R., Mirsayapov I.T., Yarullin R.R., Borovskikh I.V. Combined action of epoxy composite and protective coating with cement concrete in the adhesive contact zone. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 24–31. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-24-31. EDN: QKBKDO
8. Valiev A.I., Suleimanov A.M. Hybrid polymer composites for structural purposes. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-51-57. EDN: CFFVYI
9. Deng F., Lu W., Zhao H., Zhu Y., Kim B.S., Chou T.W. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon. 2011. No. 49, pp. 1752–1757. https://doi.org/10.1016/j.carbon.2010.12.061
10. J.-K. Kim, Y.-W. Mai. Engineered interfaces in fiber reinforced composites. Elsevier. 1998. 401 p. https://doi.org/10.1016/B978-0-08-042695-2.X5000-3
11. Nuriel S., Liu L., Barber A.H., Wagner H.D. Direct measurement of multiwall nanotube surface tension. Chemical Physics Letters. 2005. No. 404, pp. 263–266. https://doi.org/10.1016/j.cplett.2005.01.072
12. Danilov V.E., Korolev E.V., Ayzenshtadt A.M., Strokova V.V. Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens–Wendt–Rabel–Kaelble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-66-72
13. Starostina I.A., Stoyanov O.V. Development of methods for evaluation of surface acid-base properties of polymeric materials. Vestnik of the Kazan Technological University. 2010. No. 4, pp. 58–68. (In Russian).
14. Van Oss C.J., Chaudhury M.K., Good R.J. Monopolar surfaces. Advances in Colloid and Interface Science. 1987. Vol. 28, pp. 35–64. https://doi.org/10.1016/0001-8686(87)80008-8
15. Thomason J.L. Nagel U., Yang L., Bryce D. A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Composites Part A: Applied Science and Manufacturing. 2019. Vol. 121, pp. 56–63. https://doi.org/10.1016/j.compositesa.2019.03.013
16. Thomason J. A review of the analysis and characterisation of polymeric glass fibre sizings // Polymer Testing. 2020. Vol. 85. 106421. DOI: 10.1016/j.polymertesting.2020.106421
17. David B., Liu Y., Thomason J. An investigation of fibre sizing on the interfacial strength of glass-fibre epoxy composites. Conference: ECCM18 – 18th European Conference on Composite Materials. At: Athens, Greece. 24 June 2018. 8 p.
18. Demina N.M., Mukhanova I.E. Aqueous epoxy dispersions are effective film formers for. glass fiber. Review. Klei. Germetiki. Tekhnologii. 2017. No. 7, pp. 36–41 (In Russian). EDN: YZGKBX
19. Starovoitova I.A., Drogun A.V., Zykova E.S., Semenov A.N., Khozin V.G., Firsova E.B. Colloidal and chemical stability of aqueous dispersions of epoxy resins. Stroitel’nye Materialy [Construction Materials]. 2014. No. 10, pp. 74–77 (In Russian). EDN: SVNCDR
20. Zhang Z., Fan L., Zhang J., Fei G., Xu S., Yao Y., Gao H. Glass fiber sizing agent and preparation method and application thereof. Jushi group co ltd. Patent CN 110294599 (A), 01.10.2019
21. Patent RF 2699100. Sposob polucheniya vodnoi epoksidnoi dispersii [Method of preparation of aqueous epoxy dispersion]. Semenov A.N., Starovoitova I.A. Declared 01.04.2019. Published 03.09.2019 (In Russian).
22. Markova E.O., Demina N.M. Modern glass and carbon fibers for reinforcement of polymer composites. Monthly international scientific journal «International science project». (Turku, Finland). 2018. No. 21, pp. 26–28. (In Russian).

For citation: Valiev A.I., Starovoitova I.A., Suleimanov A.M. Investigation of the relationship between the energy characteristics of phases (reinforcing fibers and binder) and wettability of filler in hybrid polymer composite. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 68–75. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-68-75


Print   Email