Interfacial Interaction and Fatigue Behavior of Asphalt Mastics

Number of journal: 4-2024
Autors:

Dudareva T.V.,
Krasotkina I.A.,
Gorbatova V.N.,
Gordeeva I.V.

DOI: https://doi.org/10.31659/0585-430X-2024-823-4-61-67
УДК: 691.16

 

AbstractAbout AuthorsReferences
Rheological characteristics of five road bitumens with different group composition and penetration at 25оС from 60 to 115х0.1 mm and asphalt binders based on them with volume content of filler (mineral powder of MP1 grade) – 0.275 (mass ratio bitumen: filler – 1:1) have been determined in the range from 30 to -10оС on dynamic shear rheometer. The influence of temperature and frequency on the parameter of interfacial interaction K-B-G* and thickness of adsorbed layer of original and thermal oxidative aging samples of asphalt mastic has been investigated. It is shown that in all samples K-B-G* decreases with decreasing temperature and increasing test frequency. A decrease in K-B-G* and adsorbed layer thickness in mastics after aging was observed in the case of bitumen with Gestel colloidal index CI=0.46–0.53, defined as CI=(S+A)(/R+Ar), and was stability of K-B-G* and adsorbed layer thickness in the case of bitumen with CI=0.61. No relationship was found between group chemical composition of bitumen and adsorbed layer thickness in original mastics. In aged mastic the greater thickness of adsorbed layer has samples based on bitumen with higher content of asphaltenes. The peculiarities of fatigue behavior of bitumen and mastic in the linear amplitude sweep test were investigated. The correlation between the thickness of the adsorbed layer and the angle of slope of the curves of dependence of the maximum shear stress (τmax) on the complex modulus (G*) was noted for aged samples.
.V. DUDAREVA, Senior Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.A. KRASOTKINA, Senior Researcher,
V. N. GORBATOVA, Junior Researcher,
I.V. GORDEEVA, Candidate of Sciences (Engineering)

Semenov Federal Research Center for Chemical Physics RAS (4, Kosygina Street, Moscow, 119991, Russian Federation

1. Lu Y., Wang L.B. Molecular dynamics simulation to characterize asphalt–aggregate interfaces. In: Ebook Characterization and Behavior of Interfaces. Atlanta, Georgia, USA. 2008, pp. 125–130. https://doi.org/10.3233/978-1-60750-491-7-125
2. Kоролев И.В. Модель строения битумной пленки на минеральных зернах в асфальтобетоне //Известия высших учебных заведений. Строительство и архитектура. 1981. Т. 8. С. 63–67.
2. Korolev I.V. Model of the structure of a bitumen film on mineral grains in asphalt concrete. Izvestiya of the higher educational institutions. Construction and architecture. 1981. Vol. 8, pp. 63–67. (In Russian).
3. Guo M., Tan Y., Yu J., Hou Y., Wang L. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy. Materials and Structures. 2017. Vol. 50. 141. https://doi.org/10.1617/s11527-017-1015-9
4. Zhang J., Airey G.D., Grenfell J.R. A. Experimental evaluation of cohesive and adhesive bond strength and fracture energy of bitumen-aggregate systems. Materials and Structures. 2016. Vol. 49, pp. 2653–2667. https://doi.org/10.1617/s11527-015-0674-7
5. Chen H., Bahia H.U. Modelling effects of aging on asphalt binder fatigue using complex modulus and the LAS test. International Journal of Fatigue. 2021. Vol. 146. 106150. https://doi.org/10.1016/j.ijfatigue.2021.106150
6. Xu W., Qiu X., Xiao S., Hong H., Wang F., Yuan J. Characteristics and mechanisms of asphalt–filler interactions from a multi-scale perspective. Materials. 2020. Vol. 13. 2744. https://doi.org/10.3390/ma13122744
7. Alfaqawi R.M., Airey G.D., Presti D.Lo., Grenfell J. Effects of mineral fillers on bitumen mastic chemistry and rheology. In book: Transport Infrastructure and Systems. 2017, pp. 359–364. Publisher: proceedings of the Aiit International Congress on Transport Infrastructure and Systems (Tis 2017). Rome, Italy. 10–12 April 2017. https://doi.org/10.1201/9781315281896-48
8. Tanakizadeh A., Shafabakhsh Gh. Viscoelastic characterization of aged asphalt mastics using typical performance grading tests and rheological-micromechanical models. Construction and Building Materials. 2018. Vol. 188, pp. 88–100. https://doi.org/10.1016/j.conbuildmat.2018.08.043
9. Li F., Yang Y. Understanding the temperature and loading frequency effects on physicochemical interaction ability between mineral filler and asphalt binder using molecular dynamic simulation and rheological experiments. Construction and Building Materials. 2020. Vol. 244. 118311. https://doi.org/10.1016/j.conbuildmat.2020.118311
10. Guo M., Tan Y. Interaction between asphalt and mineral fillers and its correlation to mastics’ viscoelasticity. International Journal of Pavement Engineering. 2019. Vol. 22 (1), pp. 1–10 DOI: 10.1080/10298436.2019.1575379
11. Clopotel C.S., Bahia H. The effect of bitumen polar groups adsorption on mastics properties at low temperatures. Road Materials and Pavement Design. 2013. Vol. 14, pp. 38–51. https://doi.org/10.1080/14680629.2013.774745
12. Chen M., Javilla B., Hong W., Pan C., Riara M., Mo L., Guo M. Rheological and interaction analysis of asphalt binder, mastic and mortar. Materials. 2019. Vol. 12 (1). 128. https://doi.org/10.3390/ma12010128
13. Wu W., Jiang W., Yuan D., Lu R., Shan J., Xiao J., Ogbon A.W. A review of asphalt-filler interaction: mechanisms, evaluation methods, and influencing factors. Construction and Building Materials. 2021. Vol. 299. 124279. https://doi.org/10.1016/j.conbuildmat.2021.124279
14. Palierne J.F. Linear rheology of viscoelastic emulsions with interfacial-tension. Rheologica Acta. 1990. Vol. 29. No. 3, pp. 204–214. DOI: https://doi.org/10.1007/BF01331356
15. Wang D., Yi J., Feng D. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system. Scientific World Journal. 2014. Vol. 7. 819083. https://doi.org/10.1155/2014/819083
16. Qiu X., Xiao S., Yang Q. et al. Meso-scale analysis on shear failure characteristics of asphalt-aggregate interface. Materials and Structures. 2017. Vol. 50. 209. https://doi.org/10.1617/s11527-017-1075-x
17. Johnson C.M. Estimating asphalt binder fatigue resistance using an accelerated test method. 2010. University of Wisconsin – Madison. Open Dissertations and Theses. 2010. URL: http://digital.library.wisc.edu/1793/46799
18. AASHTO Designation: T391-20. Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. URL: https://uwmarc.wisc.edu/files/linearamplitudesweep/AASHTO%20T391-20.pdf
19. Методика измерений группового химического состава тяжелых нефтепродуктов методом жидкостно-адсорбционной хроматографии с градиентным вытеснением. Уфа, 2014. 18 с.
19. Metodika izmereniy gruppovogo khimicheskogo sostava tyazhelykh nefteproduktov metodom zhidkostno-adsorbtsionnoy khromatografii s gradiyentnym vytesneniyem [Methodology for measuring the group chemical composition of heavy petroleum products using liquid adsorption chromatography with gradient displacement]. Ufa. 2014. 18 p. (In Russian).
20. Gaestel C., Smadja R., Lamminan K.A. Contribution à la connaissance des propriétés des bitumes routiers. Rev. Gé Nérale des Routes Aérodromes. 1971. Vol. 466, pp. 85–97.
21. Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science. 2009. Vol. 145, pp. 42–82. https://doi.org/10.1016/j.cis.2008.08.011
22. Spreadsheet for analysis of linear amplitude sweep Test_V1.57 URL: https://uwmarc.wisc.edu/linear-amplitude-sweep.php

For citation: Dudareva T.V., Krasotkina I.A., Gorbatova V.N., Gordeeva I.V. Interfacial interaction and fatigue behavior of asphalt mastics. Stroitel'nye Materialy [Construction Materials]. 2024. No. 4, pp. 61–67. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-823-4-61-67


Print   Email