The Increasing еhe Efficiency of Fiber Reinforced High-Strength Self-Compacting and Carcass Concretes

Number of journal: 3-2024
Autors:

Erofeev V.T.,
Tarakanov O.V.,
Ananyev S.V.,
Lesnov V.V.,
Erofeeva I.V.,
Sanyagina Ya.A.,
Sidorov N.S.,
Ananyeva Y.S.

DOI: https://doi.org/10.31659/0585-430X-2024-822-3-15-24
УДК: 666.972.1

 

AbstractAbout AuthorsReferences
The results of experimental and theoretical studies of fiber reinforced concretes are presented. The purpose of the research was to establish physical and mechanical properties of self-compacting, carcass concrete and fiber reinforced concrete. When performing the research, white cement was used as a binder. As a reactive additive was used white carbon black BS-100. Plasticizing of the system was carried out by polycarboxylate SP. To increase the volume of dispersed phase, the combined filler from rheologically active fine ground rocks was used, namely: quartz flour R-6, and microcalcite RM-5. To form the filled structure of the composite we also used fine sand PB-150, and at the first stage steel microfiber “BMZ” and glass fiber «Antikrek sp» were used as dispersed reinforcement. Dispersed reinforcement with glass fiber 0,15 mm diameter and 18 mm long, with volume reinforcement of 0,8% increased the composite compressive strength by 13,4%, flexural tensile strength by 12,8%. Dispersed reinforcement with metal fiber of 0,15 mm diameter and 15 mm length, at volume reinforcement of 4,2% contributed to increase the compressive strength by 46,5%, flexural tensile strength by 186,6%. Further increase in the strength of fiber concretes is possible by strengthening the anchorage of fibers in the matrix. Therefore, at the second stage, the influence of different types of metal fibres, differing in shape and type of anchor, on the properties of dispersed-reinforced concrete was established. An increase in flexural and compressive strength from the introduction of dispersed reinforcement of “Spring”, “Wave” and “Dramix” types is shown. The assumption of efficiency from application of fiber of “dumbbell-like” form in modern reaction-powder composites, and also manufacturing of materials with application of frame technology, consisting at first in formation of a frame from glued grains of large aggregate and then in impregnation of its empty matrix component, is put forward. Comparison of calculated and actual strength of fiber concretes is carried out
V.T. EROFEEV1, Academician of RAASN, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. TARAKANOV2, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.V. ANANYEV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. LESNOV4, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. EROFEEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Ya.A. SANYAGINA5, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.S. SIDOROV3, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Y.S. ANANYEVA3, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Penza State University of Architecture and Construction (28, Germana Titova Street, Penza, 440028, Russian Federation)
3 Vladimir State University named after A.G. and N.G. Stoletov (87, Gorkogo Street, Vladimir, 600000, Russian Federation)
4 National Research Mordovian State University named after N.P. Ogarev (68, Bolshevistskaya Street, Saransk, 430005, Russian Federation)
5 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Морозов В.И., Пухаренко Ю.В. Эффективность применения фибробетона в конструкциях при динамических воздействиях // Вестник МГСУ. 2014. № 3. С. 189–196.
1. Morozov V.I., Pukharenko Yu.V. Efficiency of using fiber-reinforced concrete in structures under dynamic influences. Vestnik MGSU. 2014. No. 3, pp. 189–196. (In Russian).
2. Каприелов С.С., Травуш В.И., Карпенко Н.И. и др. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях. Ч. 2 // Строительные материалы. 2008. № 3. С. 9–13.
2. Kaprielov S.S., Travush V.I., Karpenko N.I. et al. Modified high-strength concrete of classes B80 and B90 in monolithic structures. Part 2. Stroitel’nye Materialy [Construction Materialy]. 2008. No. 3, pp. 9–13. (In Russian).
3. Рабинович Ф.Н. Композиты на основе дисперсно армированных бетонов. Вопросы теории и проектирования, технология, конструкции: Монография. М.: АСВ, 2011. 642 с.
3. Rabinovich F.N. Kompozity na osnove dispersno armirovannykh betonov. Voprosy teorii i proyektirovaniya, tekhnologiya, konstruktsii: Monografiya [Composites based on dispersed reinforced concrete. Questions of theory and design, technology, structures: Monograph]. Mosocw: ASV. 2011. 642 p.
4. Клюев С.В. Высокопрочный фибробетон для промышленного и гражданского строительства // Инженерно-строительный журнал. 2012. № 8 (34). С. 61–66.
4. Klyuev S.V. High-strength fiber-reinforced concrete for industrial and civil construction. Magazine of Civil Engineering. 2012. No. 8 (34), pp. 61–66.
5. Зерцалов М.Г., Хотеев Е.А. Экспериментальное определение характеристик трещиностойкости фибробетона // Вестник МГСУ. 2014. № 5. С. 91–99.
5. Zertsalov M.G., Khoteev E.A. Experimental determination of the crack resistance characteristics of fiber-reinforced concrete. Vestnik MGSU. 2014. No. 5, pp. 91–99. (In Russian).
6. Леснов В.В., Борискин А.С., Ерофеев В.Т., Коняшин А.А. Дисперсно-армированные композиты для дорожных покрытий и транспортных сооружений // Транспортное строительство. 2007. № 5. С. 24–27.
6. Lesnov V.V., Boriskin A.S., Erofeev V.T., Konyashin A.A. Dispersion-reinforced composites for road surfaces and transport structures. Transportnoye stroitel’stvo. 2007. No. 5, pp. 24–27. (In Russian).
7. Lesovik R.V., Klyuyev S.V., Klyuyev A.V., Erofeev V.T., Durachenko A.V. Fine-grain concrete reinforced by polypropylene fiber. Research Journal of Applied Sciences. 2015. Vol. 10 (10), pp. 624–628.
8. ASTM C1856/C1856M-17 Standard practice for fabricating and testing specimens of ultra-high performance concrete. 2017. DOI: 10.1520/C1856_C1856M-17
9. Wang D., Shi C., Wu Z., Xiao J., Huang Z., Fang Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials. 2015. Vol. 96, pp. 368–377. https://doi.org/10.1016/j.conbuildmat.2015.08.095
10. Mayhoub O.A., Nasr E.S.A.R., Ali Y.A., Kohail M. The influence of ingredients on the properties of reactive powder concrete: a review, Ain Shams Engineering Journal. 2021. Vol. 12. Iss. 1, pp. 145–158. https://doi.org/10.1016/j.asej.2020.07.016
11. Song J., Liu S. Properties of reactive powder concrete and its application in highway bridge. Advances in Materials Science and Engineering. 2016. 5460241. https://doi.org/10.1155/2016/5460241
12. Seok Jang H., Seok So H., So S. The properties of reactive powder concrete using PP fiber and pozzolanic materials at elevated temperature. Journal of Building Engineering. 2016. Vol. 8, pp. 225–230. https://doi.org/10.1016/j.jobe.2016.09.010
13. Abid M., Hou X., Zheng W., Hussain R.R. High temperature and residual properties of reactive powder concrete – a review. Construction and Building Materials. 2017. Vol. 147, pp. 339–351. https://doi.org/10.1016/j.conbuildmat.2017.04.083
14. Chen X., Wei Wan D., Zhi Jin L., Qian K., Fu F. Experimental studies and microstructure analysis for ultra high-performance reactive powder concrete. Construction and Building Materials. 2019. Vol. 229. 116924. https://doi.org/10.1016/j.conbuildmat.2019.116924
15. Shi C., Wu Z., Xiao J., Wang D., Huang Z., Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials. 2015. Vol. 101. P. 1, pp. 741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
16. Gamal I.K., Elsayed K.M., Makhlouf M.H., Alaa M. Properties of reactive powder concrete using local materials and various curing conditions. European Journal of Engineering and Technology Research. 2019. Vol. 4 (6), pp. 74–83. DOI:10.24018/ejers.2019.4.6.1370
17. Zhang W., Han B., Yu X., Ruan Y., Ou J. Nano boron nitride modified reactive powder concrete. Construction and Building Materials. 2018. Vol. 179, pp. 186–197. https://doi.org/10.1016/j.conbuildmat.2018.05.244
18. Li Z., Di S. The microstructure and wear resistance of microarc oxidation composite coatings containing nano-hexagonal boron nitride (HBN) particles. Journal of Materials Engineering and Performance. 2017. Vol. 26, pp. 1551–1561. https://doi.org/10.1007/s11665-017-2582-1
19. Wang, T., Wang, M., Fu, L. et al. Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets. Scientific Reports. 2018. Vol. 8. 1557. https://doi.org/10.1038/s41598-018-19945-3
20. Wang D., Zhang W., Ruan Y., Yu X., Han B. Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete. Construction and Building Materials. 2018. Vol. 189, pp. 487–497. https://doi.org/10.1016/j.conbuildmat.2018.09.041
21. Han B.B., Li Z., Zhang L., Zeng S., Yu X., Han B.B. et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2. Construction and Building Materials. 2017. Vol. 148, pp. 104–112. https://doi.org/10.1016/j.conbuildmat.2017.05.065
22. Zhang R., Cheng X., Hou P., Ye Z. Influences of nano-TiO2 on the properties of cement-based materials: hydration and drying shrinkage. Construction and Building Materials. 2015. Vol. 81, pp. 35–41. https://doi.org/10.1016/j.conbuildmat.2015.02.003
23. Irshidat M.R., Al-Saleh M.H. Thermal performance and fire resistance of nanoclay modified cementitious materials. Construction and Building Materials. 2018. Vol. 159, pp. 213–219. https://doi.org/10.1016/j.conbuildmat.2017.10.127
24. Reches Y. Nanoparticles as concrete additives: review and perspectives. Construction and Building Materials. 2018. Vol. 175, pp. 483–495. https://doi.org/10.1016/j.conbuildmat.2018.04.214
25. Hou P.K., Kawashima S., Wang K.J., Corr D.J., Qian J.S., Shah S.P. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cement and Concrete Composites. 2013. Vol. 35. Iss. 1, pp. 12–22. https://doi.org/10.1016/j.cemconcomp.2012.08.027
26. Kawashima S., Seo J.W.T., Corr D., Hersam M.C., Shah S.P. Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. Materials and Structures. 2014. Vol. 47, pp. 1011–1023. https://doi.org/ 10.1617/s11527-013-0110-9
27. Barkoula N.M., Ioannou C., Aggelis D.G., Matikas T.E. Optimization of nano-silica’s addition in cement mortars and assessment of the failure process using acoustic emission monitoring. Construction and Building Materials. 2016. Vol. 125, pp. 546–552 https://doi.org/10.1016/j.conbuildmat.2016.08.055
28. Cwirzen A., Penttala V., Vornanen C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC. Cement and Concrete Research. 2008. Vol. 38. Iss. 10, pp. 1217–1226. https://doi.org/10.1016/j.cemconres.2008.03.013
29. Cwirzen A., Penttala V., Vornanen C. RPC mix optimization by determination of the minimum water requirement of binary and polydisperse mixtures. Conference: International Symposium on Innovation & Sustainability of Structures in Civil Engineering – Including Seismic Engineering. Vol. 3, pp. 2191–2201. November 20–22, 2005. Nanjing, China.
30. Erofeev V., Bobryshev A., Lakhno A., Sibgatullin K., Igtisamov R. Theoretical evaluation of rheological state of sand cement composite systems with polyoxyethylene additive using topological dynamics concept. Materials Science Forum. Vol. 871, pp. 96–103. https://doi.org/10.4028/www.scientific.net/MSF.871.96
31. Xiaoying L., Jun L., Zhongyuan L., Li H., Jiakun C. Preparation and properties of reactive powder concrete by using titanium slag aggregates. Construction and Building Materials. 2020. Vol. 234. 117342. https://doi.org/10.1016/j.conbuildmat.2019.117342
32. Wang H., Gao X., Liu J., Ren M., Lu A. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete. Construction and Building Materials. 2018. Vol. 187, pp. 699–707. https://doi.org/10.1016/j.conbuildmat.2018.07.229
33. Nadiger A., Madhavan M.K. Influence of mineral admixtures and fibers on workability and mechanical properties of reactive powder concrete. Journal of Materials in Civil Engineering. Vol. 31 (2). DOI: 10.1061/(ASCE)MT.1943-5533.0002596
34. Ерофеев В.Т., Баженов Ю.М., Завалишин Е.В. и др. Силикатные и полимерсиликатные композиты каркасной структуры роликового формования. М.: АСВ, 2009. 160 с.
34. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V. et al. Silikatnyye i polimersilikatnyye kompozity karkasnoy struktury rolikovogo formovaniya [Silicate and polymer-silicate composites of frame structure of roller molding]. Moscow: ASV. 2009. 160 p.
35. Ерофеев В.Т., Богатова С.Н., Богатов А.Д., Казначеев С.В., Родин А.И. Биостойкие строительные композиты на смешанных вяжущих // Региональная архитектура и строительство. 2012. № 1. С. 32–38.
35. Erofeev V.T., Bogatova S.N., Bogatov A.D., Kaznacheev S.V., Rodin A.I. Biostable building composites with mixed binders. Regional’naya arkhitektura i stroitel’stvo. 2012. No. 1, pp. 32–38. (In Russian).
36. Ерофеев В.Т., Баженов Ю.М., Богатов А.Д. и др. Строительные материалы на основе отходов стекла: Монография. Саранск: Издательство Мордовского университета, 2005. 120 с.
36. Erofeev V.T., Bazhenov Yu.M., Bogatov A.D. et al. Stroitel’nyye materialy na osnove otkhodov stekla: monografiya [Construction materials based on glass waste: monograph]. Saransk: Mordovian University Publishing House, 2005. 120 p.
37. Калашников В.И., Ананьев С.В. Высокопрочные и особовысокопрочные бетоны с дисперсным армированием // Строительные материалы. 2009. № 6. С. 59–61.
37. Kalashnikov V.I., Ananyev S.V. High-strength and extra-high-strength concrete with dispersed reinforcement. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 59–61. (In Russian).

For citation: Erofeev V.T., Tarakanov O.V., Ananyev S.V., Lesnov V.V., Erofeeva I.V., Sanyagina Ya.A., Sidorov N.S., Ananyeva Y.S. The increasing еhe efficiency of fiber reinforced high-strength self-compacting and carcass concretes. Stroitel’nye Materialy [Construction Materials]. 2024. No. 3, pp. 15–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-822-3-15-24


Print   Email