Отсевы дробления гранита как компонентный фактор формирования структуры бетона. Часть II. Экспериментальные исследования структурообразующего потенциала

Журнал: №1-2-2024
Авторы:

Макеев А.И.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-59-66
УДК: 691.32

 

АннотацияОб авторахСписок литературы
Представлены результаты экспериментальных исследований индивидуального и совместного влияния макро-, мезо- и микро-нанозернистых фракций отсева дробления гранитного щебня на процессы структурообразования и свойства цементных бетонов. Установлено, что в процессах формирования структуры мелкозернистого бетона и потенциала сопротивления его разрушению все фракции отсева камнедробления выполняют свои специфические функции компонентного фактора. Макроразмерные (щебневидные) зерна отсева фракции 5–10 мм образуют макромасштабный каркас системы сложения, воспринимающий силовую нагрузку с аккумуляцией энергии нагружения и торможением магистральных трещин. Песчаные мезочастицы отсева фракции 0,16–5 мм заполняют межзерновое пространство системы сложения макрочастиц с диссипацией энергии внешнего нагружения в матричном материале. Микрофракция отсева дробления гранита фракции 0,16 мм наряду с эффектом замещения объема цементного камня проявляет физико-химическую активность в фазообразовании гидратных соединений. Показано, что в исходном отсеве дробления гранита структурообразующая роль его частиц проявляется недостаточно эффективно, главной причиной этого служит переизбыток песчаных фракций, раздвигающих зерна макрофракций и повышающих водопотребность бетонной смеси. Традиционные методы обогащения отсевов эту проблему не решают. Обсуждается принцип кондиционирования отсева путем его насыщения макро- и микроразмерными фракциями. На основе этого принципа разработана технология механической обработки отсева с получением линейки продуктов для целевого использования в индустрии строительных материалов и изделий. Внедрение такой технологии позволит существенно повысить эффективность строительно-технологической утилизации отсевов камнедробления за счет максимального использования структурообразующего потенциала их полидисперсного состава.
А.И. МАКЕЕВ, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Воронежский государственный технический университет (394006, г. Воронеж, ул. 20-летия Октября, 84)

1. Макеев А.И., Чернышов Е.М. Отсевы дробления гранита как компонентный фактор формирования структуры бетона. Ч. I. Постановка проблемы. Идентификация отсевов // Строительные материалы. 2018. № 4. С. 56–60. DOI: https://doi.org/10.31659/0585-430X-2018-758-4-56-60
1. Makeev A.I., Chernyshov E.M. Granite crushing screenings as a component factor of concrete structure formation. Part 1. Problem definition. Identification of screenings as a component factor of structure formation. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-56-60
2. Пухаренко Ю.В., Панарин С.Н., Веселова С.И. и др. Наномодифицированный бетон на основе отходов камнедробления // Вестник гражданских инженеров. 2011. № 3. С. 72–76.
2. Pukharenko Yu.V., Panarin S.N., Veselova S.I. et. al. Nanomodified concrete based on stone crushing waste. Vestnik grazhdanskikh inzhenerov. 2011. No. 3, pp. 72–76. (In Russian).
3. Макеев А.И. Научно-техническое обоснование технологии глубокой переработки отсевов дробления гранитного щебня // Научный журнал строительства и архитектуры. 2011. № 3. С. 56–67.
3. Makeev A.I. Scientific and technical justification for the technology of deep processing of crushed granite stone screenings. Nauchnyy zhurnal stroitelstva i arkhitektury. 2011. No. 3, pp. 56–67. (In Russian).
4. Морозов Н.М., Авксентьев В.И., Боровских И.В., Хозин В.Г. Применение отсевов дробления щебня в самоуплотняющихся бетонах // Инженерно-строительный журнал. 2013. № 7. С. 26–31.
4. Morozov N.M., Avksentyev V.I., Borovskikh I.V., Khozin V.G. Application of crushed stone screenings in self-compacting concrete. Magazine of Civil Engineering. 2013. No. 7, pp. 26–31. (In Russian).
5. Демьянова В.С., Чумакова О.А. Комплексное использование материалов и отходов добычи камнедробления нерудных полезных ископаемых в мелкозернистых бетонах нового поколения // Региональная архитектура и строительство. 2014. № 4. С. 57–60.
5. Demyanova V.S., Chumakova O.A. Integrated use of materials and waste from the extraction of stone crushing of non-metallic minerals in fine-grained concrete of a new generation. Regionalnaya arkhitektura i stroitelstvo. 2014. No. 4, pp. 57–60. (In Russian).
6. Бурба Д.В., Сафончик Д.И. К вопросу о применении гранитных отходов камнеобработки РУПП «Гранит» при создании эффективных строительных материалов. Архитектура, строительство, транспорт: Материалы Международной научно-практической конференции (к 85-летию ФГБОУ ВПО «СибАДИ»). Омск, 2015. С. 467–471.
6. Burba D.V., Safonchik D.I. On the issue of using granite stone processing waste from RUIE «Granit» in the production of effective building materials. Architecture, construction, transport: materials of the International Scientific and Practical Conference. Omsk. 2015, pp. 467–471 (In Russian).
7. Mármol I., Ballester P., Cerro S., Monrós G., Morales J., Sánchez L. Use of granite sludge wastes for the production of coloured cement-based mortars. Cement and Concrete Composites. 2010. Vol. 32. No. 8, pp. 617–622. DOI: 10.1016/j.cemconcomp.2010.06.003
8. Singh S., Nande N., Bansal P., Nagar R. Experimental investigation of sustainable concrete made with granite industry by-product. Journal of Materials in Civil Engineering. 2017. Vol. 29. No. 6, рр. 04017017. DOI: 10.1061/(ASCE)MT.1943-5533.0001862
9. Medina G., Sáez Del Bosque I. F., Frías M. [et al.] Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. Journal of Cleaner Production. 2017. Vol. 148, pp. 467–476. DOI: 10.1016/j.jclepro.2017.02.048
10. Rezende Leite F., Lúcia Pereira Antunes M., Cipriano Rangel E. et al. An ecodesign method application at the experimental stage of construction materials development: A case study in the production of mortar made with ornamental rock wastes. Construction and Building Materials. 2021. Vol. 293, рр. 123505. DOI: 10.1016/j.conbuildmat.2021.123505
11. Nayak S.K., Satapathy A., Mantry S. Use of waste marble and granite dust in structural applications: A review. Journal of Building Engineering. 2022. Vol. 46, рр. 103742. DOI: 10.1016/j.jobe.2021.103742
12. Rashwan M.A., Mashaly A.O., Al Basiony T.M., Khalil M.M. Self-compacting concrete between workability performance and engineering properties using natural stone wastes. Construction and Building Materials. 2022. Vol. 319, рр. 126132. DOI: 10.1016/j.conbuildmat.2021.126132
13. Ahmadi S.F., Reisi M., Amiri M.C. Reusing granite waste in eco-friendly foamed concrete as aggregate. Journal of Building Engineering. 2022. Vol. 46, рр. 103566. DOI: 10.1016/j.jobe.2021.103566.
14. Аликин А.В. О возможности массовой утилизации отсевов гранитного щебня // Записки Горного института. 2013. Т. 202. С. 143–146.
14. Alikin A.V. On the possibility of mass recycling of granite rubble screenings. Zapiski Gornogo instituta. 2013. Vol. 202, pp. 143–146. (In Russian).
15. Капустин Ф.Л., Перепелицын В.А., Пономарев В.Б., Лошкарев А.Б. Повышение эффективности использования отсевов дробления скальных горных пород // Физико-технические проблемы разработки полезных ископаемых. 2017. № 3. С. 103–107.
15. Kapustin F.L., Perepelitsyn V.A., Ponomarev V.B., Loshkarev A.B. Increasing the efficiency of using rock crushing screenings. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017. No. 3, pp. 103–107. (In Russian).
16. Макеев А.И., Чернышов Е.М. Пылевидная фракция отсевов дробления гранита как носитель микронаночастиц, участвующих в структурообразовании цементных бетонов // Нанотехнологии в строительстве. 2018. Т. 10. № 4. С. 20–38. DOI: dx.doi.org/10.15828/2075-8545-2018-10-4-20-38.
16. Makeev A.I., Chernyshov E.M. Dust fraction of granite crushing screenings as a carrier of micronanoparticles participating in the structure formation of cement concrete. Nanotekhnologii v stroitelstve: scientific online journal. 2018. Vol. 10. No. 4, pp. 20–38. (In Russian). DOI: dx.doi.org/10.15828/2075-8545-2018-10-4-20-38
17. Макеев А.И. Методологические основания теории конструирования и синтеза оптимальных структур конгломератных строительных композитов // Научный вестник Воронежского государственного архитектурно-строительного университета. Сер.: Физико-химические проблемы и высокие технологии строительного материаловедения. 2015. № 1. С. 29–37.
17. Makeev A.I. Methodological foundations of the theory of design and synthesis of optimal structures of conglomerate building composites. Nauchnyy vestnik of the Voronezh State University of Architecture and Civil Engineering. Series: Physico-chemical problems and high technologies of building materials science. 2015. No. 1, pp. 29–37. (In Russian).
18. Балабанов М.С., Чикноворьян А.Г. Исследование обогащения песка для строительных работ отсевами дробления горных пород // Градостроительство и архитектура. 2023. Т. 13. № 3. С. 50–58. DOI: 10.17673/Vestnik.2023.03.07.
18. Balabanov M.S., Chiknovoryan A.G. Study of the enrichment of sand for construction work with rock crushing screenings. Gradostroitelstvo i arkhitektura. 2023. Vol. 13. No. 3, pp. 50–58. (In Russian). DOI: 10.17673/Vestnik.2023.03.07
19. Mashaly A.O., Shalaby B.N., Rashwan M.A. Performance of mortar and concrete incorporating granite sludge as cement replacement. Construction and Building Materials. 2018. No. 169, pp. 800–818. https://doi.org/10.1016/j.conbuildmat.2018.03.046
20. Lozano-Lunar A., Jiménez J.R., Dubchenko I. et al. Performance of self-compacting mortars with granite sludge as aggregate. Construction and Building Materials. 2020. Vol. 251. 118998. DOI: 10.1016/j.conbuildmat.2020.118998
21. Jain A., Chaudhary S., Gupta R. Mechanical and microstructural characterization of fly ash blended self-compacting concrete containing granite waste. Construction and Building Materials. 2022. Vol. 314. 125480. DOI: 10.1016/j.conbuildmat.2021.125480
22. Chen J.J., Ng P.L., Kwan A.K.H. Optimum fines content in manufactured sand for best overall performance of superplasticized concrete. Journal of Materials in Civil Engineering. 2023. Vol. 36. Iss. 1. https://doi.org/10.1061/JMCEE7.MTENG-16195
23. Song T.H., Lee S.H., Kim B. Recycling of crushed stone powder as a partial replacement for silica powder in extruded cement panels. Construction and Building Materials. 2014. Vol. 52, рр. 105–115. DOI: 10.1016/j.conbuildmat.2013.10.060
24. Medina G., Sáez del Bosque I.F., Frías M., Sánchez de Rojas M.I., Medina C. Mineralogical study of granite waste in a pozzolan/Ca(OH)2 system: influence of the activation process. Applied Clay Science. 2017. Vol. 135, рр. 362–371. https://doi.org/10.1016/j.clay.2016.10.018
25. Prokopski G., Marchuk V., Huts A. The effect of using granite dust as a component of concrete mixture. Case Studies in Construction Materials. 2020. Vol. 13. e00349. DOI: 10.1016/j.cscm.2020.e00349
26. Капустин Ф.Л., Пономарев В.Б. Получение обогащенного песка из отсевов дробления горных пород на пневматическом классификаторе // Обогащение руд. 2016. № 4. С. 56–60. DOI: 10.17580/or.2016.04.09
26. Kapustin F.L., Ponomarev V.B. Obtaining enriched sand from rock crushing screenings using a pneumatic classifier. Obogashcheniye rud. 2016. No. 4, pp. 56–60. (In Russian). DOI: 10.17580/or.2016.04.09

Для цитирования: Макеев А.И. Отсевы дробления гранита как компонентный фактор формирования структуры бетона. Часть II. Экспериментальные исследования структурообразующего потенциала // Строительные материалы. 2024. № 1–2. С. 59–66. DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-59-66


Печать   E-mail