Влияние вида и объемного содержания стальной фибры на прочность сверхвысокопрочного сталефибробетона при сжатии

Журнал: №11-2023
Авторы:

Соловьев В.Г.,
Матюшин Е.В.,
Ефишов Л.И.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-20-27
УДК: 691.3

 

АннотацияОб авторахСписок литературы
Приведены результаты определения прочности при сжатии различных составов сверхвысокопрочного сталефибробетона (СВФБ) с объемным содержанием фибры от 1 до 3%. Было использовано четыре вида фибры: волновая размером 15/0,3 и 22/0,3 мм, прямая 13/0,3 мм и анкерная 30/0,5 мм. Установлено, что волновая и анкерная фибра приводит к повышению прочности при сжатии на 10–30 МПа при увеличении ее содержания с 1 до 3%. Фибра прямого профиля не оказывает заметного влияния на механические свойства фибробетона. Получены эмпирические уравнения для прогнозирования прочности СВФБ при сжатии в зависимости от прочности бетона-матрицы, геометрических размеров и содержания дисперсного армирования для составов с волновой и анкерной фиброй. Установлено, что увеличение объемного содержания заполнителя в составе бетонной матрицы с 0,2 до 0,4 м33 приводит к повышению прочности при сжатии СВФБ. Прочность образцов с волновой фиброй увеличилась на 5,3–13,3 МПа, с анкерной – на 14–19,3 МПа, с прямой – на 5–7 МПа. Наиболее интенсивный рост механических характеристик вследствие повышения доли заполнителя в составе наблюдается при большем процентном содержании фибры.
В.Г. СОЛОВЬЕВ, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Е.В. МАТЮШИН, преподаватель (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Л.И. ЕФИШОВ, преподаватель (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Национальный исследовательский Московский государственный строительный университет (129337, г. Москва, Ярославское ш., 26)

1. Bajaber M.A., Hakeem I.Y. UHPC evolution, development, and utilization in construction: a review. Journal of Materials Research and Technology. 2021. Vol. 10, pp. 1058–1074. https://doi.org/10.1016/j.jmrt.2020.12.051
2. Azmee N.M., Shafiq N. Ultra-high performance concrete: from fundamental to applications. Case Studies in Construction Materials. 2018. Vol. 9. e00197 https://doi.org/10.1016/j.cscm.2018.e00197
3. Sharma R., Jang J.G., Bansal P.P. A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete. Journal of Building Engineering. 2022. Vol. 45. 103314. https://doi.org/10.1016/j.jobe.2021.103314
4. Benson S.D.P., Karihaloo B.L. CARDIFRC® – development and mechanical properties. Part III: Uniaxial tensile response and other mechanical properties. Magazine of Concrete Research. 2005. Vol. 57, pp. 433–443. https://doi.org/10.1680/macr.2005.57.8.433
5. Yang J., Chen B., Nuti C. Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete. Construction and Building Materials. 2021. Vol. 302. 124104. https://doi.org/10.1016/j.conbuildmat.2021.124104
6. Savino V., Lanzoni L., Tarantino A.M., Viviani M. An extended model to predict the compressive, tensile and flexural strengths of HPFRCs and UHPFRCs: Definition and experimental validation. Composites Part B: Engineering. 2019. Vol. 163, pp. 681–689. https://doi.org/10.1016/j.compositesb.2018.12.113
7. Yang J., Chen B., Wu X., Xu G. Quantitative analysis of steel fibers on UHPFRC uniaxial tensile behavior using X-CT and UTT. Construction and Building Materials. 2023. Vol. 368. 130349. https://doi.org/10.1016/j.conbuildmat.2023.130349
8. Paschalis S., Lampropoulos A. Fiber content and curing time effect on the tensile characteristics of ultra high performance fiber reinforced concrete. Structural Concrete. 2017. Vol. 18, pp. 577–588. https://doi.org/10.1002/suco.201600075
9. Wille K., El-Tawil S., Naaman A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites. 2014. Vol. 48, pp. 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
10. Yoo D.Y., Lee J.H., Yoon Y.S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures. 2013. Vol. 106, pp. 742–753. https://doi.org/10.1016/j.compstruct.2013.07.033
11. Roy M., Hollmann C., Wille K. Influence of volume fraction and orientation of fibers on the pullout behavior of reinforcement bar embedded in ultra high performance concrete. Construction and Building Materials. 2017. Vol. 146, pp. 582–593. https://doi.org/10.1016/j.conbuildmat.2017.04.081
12. Pyo S., Wille K., El-Tawil S., Naaman A.E. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension. Cement and Concrete Composites. 2015. Vol. 56, pp. 15–24. https://doi.org/10.1016/j.cemconcomp.2014.10.002
13. Xue J., Briseghella B., Huang F., Nuti C., Tabatabai H., Chen B. Review of ultra-high performance concrete and its application in bridge engineering. Construction and Building Materials. 2020. Vol. 260. 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844
14. Jia J., Ren Z., Bai Y., Li J., Sun Y., Zhang Z., Zhang J. Tensile behavior of UHPC wet joints for precast bridge deck panels. Engineering Structures. 2023. Vol. 283. 115826. https://doi.org/10.1016/j.engstruct.2023.115826
15. Марченко М.С., Чилин И.А., Селютин Н.М. Опыт применения сверхвысокопрочного сталефибробетона в элементах усиления железобетонных конструкций // Вестник НИЦ «Строительство». 2021. Т. 30. № 3. С. 41–50.
15. Marchenko M.S., Chilin I.A., Selyutin N.M. Experience in using ultra-high-strength steel-fiber concrete in reinforcement elements of reinforced concrete structures. Vestnik NITs «Stroitel’stvo». 2021. Vol. 30. No. 3, pp. 41–50 (In Russian).
16. Mash J.A, Harries K.A., Rogers C. Repair of corroded steel bridge girder end regions using steel, concrete, UHPC and GFRP repair systems. Journal of Constructional Steel Research. 2023. Vol. 207. 107975. https://doi.org/10.1016/j.jcsr.2023.107975
17. Zhang H., Ji T., Lin X. Pullout behavior of steel fibers with different shapes from ultra-high performance concrete (UHPC) prepared with granite powder under different curing conditions. Construction and Building Materials. 2019. Vol. 211, pp. 688–702. https://doi.org/10.1016/j.conbuildmat.2019.03.274
18. Yoo D.Y., Kim S. Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads. Cement and Concrete Composites. 2019. Vol. 97, pp. 89–106. https://doi.org/10.1016/j.cemconcomp.2018.12.023
19. Qi J., Wu Z., Ma Z.J., Wang J. Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Construction and Building Materials. 2018. Vol. 191, pp. 764–774. https://doi.org/10.1016/j.conbuildmat.2018.10.067
20. Kang S.H. Kim J.J., Kim D.J., Chung Y.S. Effect of sand grain size and sand-to-cement ratio on the interfacial bond. Construction and Building Materials. 2013. Vol. 47, pp. 1421–1430. https://doi.org/10.1016/j.conbuildmat.2013.06.064
21. Соловьев В.Г., Матюшин Е.В., Ефишов Л.И. Влияние объемного содержания стальной фибры и заполнителя на свойства ультравысокофункциональных фибробетонов // Техника и технология силикатов. 2022. Т. 29. № 1. С. 16–26.
21. Solov’ev V.G., Matyushin E.V., Efishov L.I. The influence of the volumetric content of steel fiber and filler on the properties of ultra-high-functional fiber-reinforced concrete. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 16–26. (In Russian).
22. Соловьев В.Г., Матюшин Е.В., Веселов В.К. Изучение влияния вида и объемного содержания заполнителя на свойства сверхвысокопрочного мелкозернистого бетона // Техника и технология силикатов. 2022. Т. 29. № 4. С. 317–325.
22. Soloviev V.G., Matyushin E.V., Veselov V.K. Study of the influence of the type and volumetric content of aggregate on the properties of ultra-high-strength fine-grained concrete. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 4, pp. 317–325.
23. Soloviev V., Matiushin E., Mihailov V., Efishov L. Effect of mixture flowability on strength and fiber distribution of Ultra High-Performance Fiber Reinforced Concrete. E3S Web of Conferences. Vol. 410. DOI:10.1051/e3sconf/202341001012
24. Тамов М.М., Салиб М.И.Ф., Абуизеих Ю.К.И., Софьяников О.Д. Подбор составов и исследование прочностных характеристик самоуплотняющегося сверхвысокопрочного сталефибробетона // Известия высших учебных заведений. Строительство. 2022. № 4. С. 25–39.
24. Tamov M.M., Salib M.I.F., Abuizeikh Yu.K.I., Sofyanikov O.D. Selection of compositions and study of the strength characteristics of self-compacting ultra-high-strength steel fiber concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2022. No. 4, pp. 25–39. (In Russian).
25. Чилин И.А. Влияние технологических факторов на свойства сверхвысокопрочного сталефибробетона // Вестник НИЦ «Строительство». 2020. Т. 27. № 4. С. 135–157.
25. Chilin I.A. The influence of technological factors on the properties of ultra-high-strength steel fiber concrete. Vestnik NITs «Stroitel’stvo». 2020. Vol. 27. No. 4, pp. 135–157. (In Russian).
26. Yu R., Spiesz P., Brouwers H.J.H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research. 2014. Vol. 565, pp. 29–39. https://doi.org/10.1016/j.cemconres.2013.11.002
27. Song Q., Yu R., Shui Z., Rao S., Wang X., Sun M., Jiang C. Steel fibre content and interconnection induced electrochemical corrosion of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Composites. 2018. Vol. 94, pp. 191–200. https://doi.org/10.1016/j.cemconcomp.2018.09.010
28. Дорф В.А., Красновский Р.О., Капустин Д.Е., Горбунов И.А. Влияние характеристик фибры на кубиковую и призменную прочность сталефибробетона с цементно-песчаной матрицей // Бетон и железобетон. 2013. № 6. С. 6–9.
28. Dorf V.A., Krasnovsky R.O., Kapustin D.E., Gorbunov I.A. The influence of fiber characteristics on the cubic and prismatic strength of steel-fiber concrete with a cement-sand matrix. Beton i zhelezobeton. 2013. No. 6, pp. 6–9. (In Russian).
29. Arel H.S. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC. Results in Physics. 2016. Vol. 6, pp. 664–674. https://doi.org/10.1016/j.rinp.2016.09.016
30. Lagne-Kornbak D., Karihaloo B.L. Design of fiber-reinforced DSP mixes for minimum brittleness. Advanced Cement Based Materials. 1998. Vol. 7, pp. 89–101. https://doi.org/10.1016/S1065-7355(97)00057-6
31. Li V.C. A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites. Cement and Concrete Composites. 1992. Vol. 14, pp. 131–141. https://doi.org/10.1016/0958-9465(92)90006-H
32. Abrishambaf A., Pimentel M., Nunes S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites. Cement and Concrete Research. 2017. Vol. 97, pp. 28–40. https://doi.org/10.1016/j.cemconres.2017.03.007

Для цитирования: Соловьев В.Г., Матюшин Е.В., Ефишов Л.И. Влияние вида и объемного содержания стальной фибры на прочность сверхвысокопрочного сталефибробетона при сжатии // Строительные материалы. 2023. № 11. С. 20–27. DOI: https://doi.org/10.31659/0585-430X-2023-819-11-20-27


Печать   E-mail