Metallurgical Waste as a Raw Material Reserve for Achieving Carbon Neutrality of the Construction Industry.Part 1. Ability of Metallurgical Waste to Bind CO2

Number of journal: 11-2023
Autors:

Lyubomirsky N.V.,
Bakhtin A.S.,
Bakhtina T.A.,
Nikolaenko V.V.,
Bilenko G.R.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-80-94
УДК: 691.335

 

AbstractAbout AuthorsReferences
The solution to global environmental problems is to reduce the anthropogenic impact on the environment through the utilization of carbon dioxide emissions and the use of industrial waste to produce new materials and products. Technogenic wastes of the metallurgical industry are considered as raw materials for the production of building materials and products with the ability to bind gaseous CO2. The analysis and selection of waste from metallurgical enterprises located in the Central and North-Western Federal Districts of the Russian Federation is carried out. The results of studies of environmental friendliness, chemical, material and phase-mineralogical compositions of technogenic metallurgy waste, their hydration activity and ability to bind carbon dioxide are presented. It is shown that the most promising raw materials for the production of building materials and products are steelmaking slags and nepheline sludge from the processing of alumina raw materials. The greatest ability to absorb and bind CO2 is distinguished by nepheline sludge (up to 12% CO2 by weight of sludge), steelmaking (converter and electric steelmaking) slags (up to 8.8 and 9.2% CO2 by weight of slag, respectively). The compressive strength of the prototypes on these types of slags depends on the degree of their carbonation and reaches values of 100 MPa or more after 6 hours of forced carbonation. It is concluded that the material obtained from man-made metallurgical waste by carbonation hardening technology can be used as a matrix substance for various building materials and products.
N.V. LYUBOMIRSKY, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. BAKHTIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.A. BAKHTINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. NIKOLAENKO, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.R. BILENKO, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

V.I. Vernadsky Crimean Federal University (4, Academician Vernadskiy Avenue, Simferopol, 295007, Republic of Crimea, Russian Federation)

1. Специальный доклад МГЭИК. Улавливание и хранение двуокиси углерода. 2005. (редакторы Берт Метц, Огунладе Дэвидсон Хелен де Конинк, Мануэла Лоос, Лео Мейер), 2005. Версия в электронном виде доступна на веб-сайте Секретариата МГЭИК: www.ipcc.ch (дата обращения 12.06.2023).
1. IPCC Special Report. Capture and storage of carbon dioxide. 2005. (eds. Bert Metz, Ogunlade Davidson Helen de Koninck, Manuela Loos, Leo Meyer), 2005. An electronic version is available on the IPCC Secretariat website: www.ipcc.ch (Date of access 12.06.23).
2. Технологический обзор. Улавливание, использование и хранение углерода (CCUS). 2022. [Technology Brief. Carbon Capture, Use And Storage (CCUS)]. https://shop.un.org (дата обращения 12.06.2023).
2. Technology Brief. Carbon Capture, Use And Storage (CCUS). 2022. https://shop.un.org (Date of access 12.06.23).
3. Bui Mai, Adjiman Claire S., Bardow André and others. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science. 2018. 11, рр. 1062–1176. DOI: 10.1039/c7ee02342a
4. D’Alessandro Deanna M., Smit Berend, Long Jeffrey R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition. 2010. Vol. 49, рр. 6058–6082. DOI: 10.1002/anie.201000431
5. Gulzar A., Gulzar A., Ansari M.B. He F., Gai S., Yang P. Carbon dioxide utilization: A paradigm shift with CO2 economy. Chemical Engineering Journal Advances. 2020. Vol. 3. 100013. DOI: 10.1016/j.ceja.2020.100013
6. Fatima S.S., Borhan A., Ayoub M., Ghani N.A. Development and progress of functionalized silica-based adsorbents for CO2 capture. Journal of Molecular Liquids. 2021. Vol. 338. 116913. DOI: 10.1016/j.molliq.2021.116913
7. CO2 Emissions in 2022. International Energy Agency (IEA). Flagship report March 2023. https://www.iea.org/reports/co2-emissions-in-2022 (дата обращения 12.06.2023).
8. Сазанов Ю.Н., Грибанов А.В. Карбонизация полимеров. СПб.: Научные основы и технологии, 2013. 296 с.
8. Sazanov Yu.N., Gribanov A.V. Carbonizatsiya polimerov [Сarbonization of polymers]. Saint Petersburg: Scientific foundations and technologies, 2013. 296 p.
9. Ушеров-Маршак А.В. Бетоноведение: лексикон. М.: РИФ «Стройматериалы», 2009. 112 с.
9. Usherov-Marshak A.V. Betonovedeniye: lexicon [Concrete science: lexicon]. Moscow: RIF Stroymate-rialy, 2009. 112 p.
10. Proctor D.M., Fehling K.A., Shay E.C., Wittenborn J.L., Green J.J., Avent C., Bigham R.D., Connolly M., Lee B., Shepker T.O. and Zak M.A. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environmental Science and Technology. 2000. Vol. 34, рр. 1576–1582. DOI: 10.1021/ES9906002
11. Lin B., Wang H., Zhu X., Liao Q., Ding B. Crystallization properties of molten blast furnace slag at different cooling rates. Applied Thermal Engineering. 2016. Vol. 96, рр. 432–440. DOI: 10.1016/j.applthermaleng.2015.11.075
12. Sanjuаn M.А., Estеvez E., Argiz C., del Barrio D. Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cement and Concrete Composites. 2018. Vol. 90, рр. 257–265. DOI: 10.1016/j.cemconcomp.2018.04.006
13. Seo J., Kim S., Park S., Yoon H.N., Lee H.K. Carbonation of calcium sulfoaluminate cement blended with blast furnace slag. Cement and Concrete Composites. 2021. Vol. 118. Article 103918. DOI: 10.1016/j.cemconcomp.2020.103918
14. Uliasz-Bocheńczyk A., Mokrzycki E. CO2 mineral sequestration with the use of ground granulated blast furnace slag. Gospod. Surowcami Miner. 2017. Vol. 33, рр. 111–124. DOI: 10.1515/gospo-2017-0008
15. You K.S., Lee S.H., Hwang S.H., Kim H.S., Ahn J.W. CO2 sequestration via a surface –modified ground granulated blast furnace slag using NaOH solution. Materials Transactions. 2011. Vol. 52, рр. 1972–1976. DOI: 10.2320/matertrans.M2011110
16. Ren E., Tang S., Liu C., Yue H., Li C., Liang B. Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions. Greenhouse Gases: Science and Technology. 2020. Vol. 10, рр. 436–448. DOI: https://doi.org/10.1002/ghg.1837
17. Huijgen W.J., Witkamp G.J., Comans R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science. 2006. Vol. 61, рр. 4242–425. DOI: 10.1016/j.ces.2006.01.048
18. Huijgen W.J., Witkamp G.J., Comans R.N. Mineral CO2 sequestration by steel slag carbonation. Environmental Science & Technology. 2005. Vol. 39, рр. 9676–9682. DOI: 10.1021/es050795f
19. Zhong X., Li L., Jiang Y., Ling T.-C. Elucidating the dominant and interaction effects of temperature, CO2 pressure and carbonation time in carbonating steel slag blocks. Construction and Building Materials. 2021. Vol. 302. Article 124158. DOI: 10.1016/j.conbuildmat.2021.124158
20. Shi C., Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products. Resources, Conservation and Recycling. 2008. Vol. 52 (8–9), рр. 1087–1092. DOI: https://doi.org/10.1016/j.resconrec.2008.05.002
21. Mahoutian M., Ghouleh Z., Shao Y. Carbon dioxide activated ladle slag binder. Construction and Building Materials. 2014. Vol. 66, рр. 214–221. DOI: 10.1061/(ASCE)MT.1943 –5533.0001055
22. Siriwardena D.P. Quantification of СО2 sequestration capacity and carbonation rate of alkaline industrial byproducts. Construction and Building Materials. 2015. Vol. 19, рр. 216–224. DOI: 10.1016/j.conbuildmat.2015.05.035
23. Yadav S., Mehra A. Experimental study of dissolution of minerals and СО2 sequestration in steel slag. Waste Management. 2017. Vol. 64, рр. 348–357. DOI: 10.1016/j.wasman.2017.03.032
24. Ukwattage N.L., Ranjith P.G., Li X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement. 2017. Vol. 97, рр. 15–20. DOI: 10.1016/j.measurement.2016.10.057
25. Mo L., Zhang F., Deng M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under СО2 curing. Cement and Concrete Research. 2016. Vol. 88, рр. 217–226. DOI: 10.1016/j.cemconres.2016.05.013
26. Mai U., Rein K., Lale A., Kalle K. The СО2-binding by Сa-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia. 2011. Vol. 4, рр. 925–932. DOI: 10.1016/j.egypro.2011.01.138
27. Santos R.M., Van Bouwel J., Vandevelde E., Mertens G., Elsen J., Van Gerven T. Accelerated mineral carbonation of stainless steel slags for СО2 storage and waste valorization: effect of process parameters on geochemical properties. International Journal of Greenhouse Gas Control. 2013. Vol. 17, рр. 32–45. DOI: 10.1016/j.ijggc.2013.04.004
28. Salman M., Cizer Ö., Pontikes Y., Santos R.M., Snellings R., Vandewalle L., Blanpain B., Van Balen K. Effect of accelerated carbonation on and stainless steel slag for its valorisation as a CO2-sequestering construction material. Chemical Engineering Journal. 2014. Vol. 246, рp. 39–52. DOI: 10.1016/J.CEJ.2014.02.051
29. Kaliyavaradhan S.K., Ling T.-C., Mo K.H. Valorization of waste powders from cement-concrete life cycle: a pathway to circular future. Journal of Cleaner Production. 2020. Vol. 268. Article 122358. DOI: 10.1016/j.jclepro.2020.122358
30. Mehdizadeh H., Jia X., Mo K.H., Ling T.-C. Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes. Environmental Pollution. 2021. Vol. 280. Article 116914. DOI: 10.1016/j.envpol.2021.116914

For citation: Lyubomirsky N.V., Bakhtin A.S., Bakhtina T.A., Nikolaenko V.V., Bilenko G.R. Metallurgical waste as a raw material reserve for achieving carbon neutrality of the construction industry. Part 1. Ability of metallurgical waste to bind CO2. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 80–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-80-94


Print   Email