Functional Building Materials for Passive Degradation of Organic Air Pollutants

Number of journal: No.1-2-2023
Autors:

Bondarenko A.V.,
Bondarev B.A.,
Borkov P.V.,
Ruello M.L.,
Bondarenko V.V.

DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-4-10
УДК: 612.223.1

 

AbstractAbout AuthorsReferences
The work is devoted to the new role of finishing materials – ensuring passive degradation of air pollutants in residential and industrial premises. Information is provided on the international Indoor Air Quality (IAQ) strategy, which is aimed at ensuring indoor air quality, the main approaches of the strategy including ensuring passive degradation of pollutants due to the use of functional additives in finishing building materials are presented. The advantages of photo-catalytic additives, which ensure the decomposition of organic compounds to safe products, are shown. The results of testing a photo-catalytic material synthesized by applying a layer of titanium dioxide on kaolinite are presented, its properties are shown, as well as the results of using this additive in fillers, ceramic and paint-and-lacquer coatings. The photocatalytic activity of materials was tested to reduce the content of methyl ethyl ketone in the air of a hermetic reactor when materials with a functional additive and base materials were placed there. The most stable trend for a decrease in concentration under ultraviolet illumination was obtained when used in putty and coating obtained by sintering powder to 900oC (below the sintering temperature), where the material retains its initial state. The use in polyurethane varnish leads to complex processes that require additional study, so it is impossible to unequivocally recommend varnishes and paints as a carrier at this stage of the study.
A.V. BONDARENKO1, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it. ),
B.A. BONDAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.V. BORKOV1, Candidate of Sciences (Engineering) (borkov(This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.L. RUELLO2, PhD, Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. BONDARENKO3, PhD, Engineer( This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Lipetsk State Technical University (30, Moskovskaya Street, Lipetsk, 398042, Russian Federation)
2 Universit Politecnica delle Marche (12, Brecce Bianche Street, Аncona, 60131, Italy)
3 LLC “Intellekt Uslugi Service” (9, Kommunalnaya Square, Lipetsk, 398059, Russian Federation)

1. Augugliaro V., Loddo V., Pagliaro M., Palmisano G., Palmisano L. Clean by light irradiation: practical applications of supported TiO2. The Royal Society of Chemistry. Cambridge CB40WF, UK. 2010
2. Matsumoto H., Shimizu M., Sato H. The contaminant removal efficiency of an air cleaner using the adsorption/desorption effect. Building and Environment. 2009. Vol. 44, pp. 1371–1377. doi: 10.1016/j.buildenv.2008.09.006
3. Kunkel D., Gall E., Siegel J.A., Novoselac A., Morrison G.C., Corsi R.L., Passive reduction of human exposure to indoor ozone. Building and Environment. 2010. Vol. 45, pp. 445–452.
4. Senff L., Tobaldi D.M., Lucas S., Hotza D., Ferreira V.M., Labrincha J.A., Formulation of mortars with nano-SiO2 and nano-TiO2 for degradation of pollutants in buildings. Journal of Composite Materials. 2012. Vol. 44. Part B, pp. 40–47. doi: 10.1016/j.compositesb.2012.07.022
5. Liu Y., Zhou X., Wang D., Song C., Liu J. A prediction model of VOC partition coefficient in porous building materials based on adsorption potential theory. Building and Environment. 2015. Vol. 93, pp. 221–233.
6. Weschler Ch. J., Nazaroff W. W. Semivolatile organic compounds in indoor environments. Atmospheric Environment. 2008. Vol. 42, pp. 9018–9040.
7. Meininghaus R., Gunnarsen L., Knudsen H.N. Diffusion and sorption of volatile organic compounds in building materials-impact on indoor air quality. Environmental Science & Technology. 2000. Vol. 34, pp. 3101–3108. doi:10.1021/es991291i
8. Kozlov D. Titanium dioxide in gas-phase photo-catalytic oxidation of aromatic and heteroatom organic substances: deactivation and reactivation of photocatalyst. Theoretical and Experimental Chemistry. 2014. Vol. 50. No. 3, pp. 133–154.
9. Paola A.D., García-López E., Marcì G., Palmisano L. A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials. 2012. Vol. 211–212, pp. 3– 29.
10. Zhong L., Haghighat F. Photocatalytic air cleaners and materials technologies: Abilities and limitations. Building and Environment. 2015. Vol. 91, pp. 191–203.
11. Einaga H., Futamura S., Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis B: Environmental. 2002. Vol. 38, pp. 215–225.
12. Шестаков Н.И., Алексеева Д.С., Полосина Д.В. Применение фотокаталитических бетонов в дорожном строительстве // Вестник БГТУ им. В.Г. Шухова. 2021. № 12. С. 16–26. DOI: 10.34031/2071-7318-2021-6-12-16-26
12. Shestakov N.I., Alekseeva D.S., Polosina D.V. Application of photocatalytic concretes in road construction. Vestnik BSTU name after V.G. Shukhov. 2021. No. 12, pp. 16–26. (In Russian). DOI: 10.34031/2071-7318-2021-6-12-16-26
13. Антоненко М.В., Огурцова Ю.Н., Строкова В.В., Губарева Е.Н. Фотокаталитически активные самоочищающиеся материалы на основе цемента. Составы, свойства, применение // Вестник БГТУ им. В.Г. Шухова. 2020. № 3. С. 16–25. DOI: 10.34031/2071-7318-2020-5-3-16-25
13. Antonenko M.V., Ogurtsova Yu.N., Strokova V.V., Gubareva E.N. Photocatalytically active self-cleaning materials based on cement. Compositions, properties, application. Vestnik BSTU name after V.G. Shukhov. 2020. No. 3, pp. 16–25. (In Russian). DOI: 10.34031/2071-7318-2020-5-3-16-25
14. Лукутцова Н.П., Постникова О.А., Соболева Г.Н., Ротарь Д.В., Оглоблина Е.В. Фотокаталитическое покрытие на основе добавки нанодисперсного диоксида титана // Строительные материалы. 2015. № 11. С. 5–8.
14. Lukutsova N.P., Postnikova O.A., Soboleva G.N., Rotar D.V., Ogloblina E.V. Photocatalytic coating based on the addition of nanodispersed titanium dioxide. Stroitel’nye Materialy [Construction Materials]. 2015. No. 11, pp. 5-8. (In Russian).
15. Хела Р., Боднарова Л. Исследование возможности тестирования эффективности фотокатализа TIO2 в бетоне // Строительные материалы. 2015. № 2. С. 77–81.
15. Hela R., Bodnarova L. Study of the possibility of testing the efficiency of TiO2 photocatalysis in concrete. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 77–81. (In Russian).
16. Баженов В.К., Червонцева М.А. Эффективность применения фотокаталитических бетонов в городском строительстве // Вестник МИТУ-МАСИ. 2018. № 3. С. 27–31.
16. Bazhenov V.K., Chervontseva M.A. Efficiency of using photocatalytic concretes in urban construction. Vestnik MITU-MACI. 2018. No. 3, pp. 27–31. (In Russian).
17. Фаликман В.Р., Вайнер А.Я. Фотокаталитические цементные композиты, содержащие мезопористые наночастицы диоксида титана // Нанотехно-логии в строительстве. 2014. Т. 6. № 1. С. 14–26.
17. Falikman V.R., Weiner A.Ya. Photocatalytic cement composites containing mesoporous titanium dioxide nanoparticles. Nanotechnologii v stroitelstve. 2014. Vol. 6. No. 1, pp. 14–26. (In Russian).
18. Фаликман В.Р., Вайнер А.Я. Новые высокоэффективные добавки для фотокаталитических бетонов. Синтез и исследование // Нанотехнологии в строительстве. 2015. Т. 7. № 1. С. 18–28. DOI: 10.15828/2075-8545-2015-7-1-18-28
18. Falikman V.R., Weiner A.Ya. New highly effective additives for photocatalytic concretes. Synthesis and research. Nanotechnologii v stroitelstve. 2015. Vol. 7. No. 1, pp. 18–28. (In Russian). DOI: 10.15828/2075-8545-2015-7-1-18-28
19. Ляпидевская О.Б., Фрайнт М.А. Фотокаталити-ческий бетон для дорожного строительства // Вестник МГСУ. 2014. № 2. С. 125–130.
19. Lyapidevskaya O.B., Freint M.A. Photocatalytic concrete for road construction. Vestnik MSUCE. 2014. No. 2, pp. 125–130. (In Russian).
20. Anpo M., Kawamura T., Kodama S., Maruya K., Onishi T. Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species. Journal of Physical Chemistry. 1988. Vol. 92 (2), pp. 438–440.
21. Anpo M., Nakaya H., Kodama S., Kubokawa Y., Domen K., Onishi T. Photocatalysis over binary metal oxides: enhancement of the photocatalytic activity of TiO2 in titanium-silicon oxides. Journal of Physical Chemistry. 1986. Vol. 90, pp. 1633–1636.
22. Ohno В.T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General. 2004. Vol. 265, pp. 115–121.
23. Бондаренко В.В., Руэлло М.Л., Бондаренко А.В., Петухова Г.А., Дубинина Л.А. Исследование адсорбционно-структурных характеристик и фотоактивности композита TiO2/каолинит. Физико-химия поверхности и защита материалов. 2019. T. 55. № 2. C. 127–143.
23. Bondarenko V.V., Ruello M.L., Bondarenko A.V., Petukhova G.A., Dubinin L.A. A Study of the Adsorption-Structural Parameters and Photoactivity of TIO2/kaolinite Composite. Fiziko-khimiya poverkhnosti i zashchita materialov. 2019. Vol. 55. No. 2, pp. 217–233. (In Russian).
24. Tobaldi D.M., Tucci A., Camera-Roda G., Baldi G., Esposito L. Photocatalytic activity for exposed building materials. Journal of the European Ceramic Society. 2008. Vol. 28, pp. 2645–2652.
25. Selishchev D.S., Kolobov N.S., Pershin A.A., Kozlov D.V. TiO2 mediated photocatalytic oxidation of volatile organic compounds: formation of CO as a harmful by-product. Applied Catalysis B: Environmental. 2017. Vol. 200, pp. 503–515. DOI: 10.1016/j.apcatb.2016.07.044

For citation: Bondarenko A.V., Bondarev B.A., Borkov P.V., Ruello M.L., Bondarenko V.V. Functional building materials for passive degradation of organic air pollutants. Stroitel’nye Materialy [Construction Materials]. 2023. No. 1–2, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-810-1-2-4-10


Print   Email