Determination of Adiabatic Temperature in Hardening Concrete According to Different Standards

Number of journal: 11-2023
Autors:

Nguyen T.C.,
Tang V.L.,
Bulgakov B.I.

DOI: https://doi.org/10.31659/0585-430X-2023-819-11-39-45
УДК: 666.972.165

 

AbstractAbout AuthorsReferences
The problem of thermal cracking in mass concrete structures still remains unsolved. There are many factors that influence the thermal regime in these concrete structures, the main ones being the type and content of cement in the concrete mixture, the thickness of the concrete layer, and the ambient temperature. However, the most important factor is the cause of the heat generated. Currently, there are a large number of standards and empirical formulas for determining the origin of a heat source using adiabatic equations. This paper provides a comparison of formulas for determining the adiabatic temperature in hardening concrete as the basis for determining the thermal regime in large-sized concrete structures.
T.C. NGUYEN1, Candidate of Sciences (Engineering), Lecturer-Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.L. TANG2, Candidate of Sciences (Engineering), Lecturer-Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.);
B.I. BULGAKOV3, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Le Quy Don Technical University (236 Hoang Quoc Viet Street, Ha Noi, Vietnam)
2 Hanoi University of Mining and Geology (18 Pho Vien, Duc Thang, Bac Tu Liem, Hanoi, Vietnam)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Нгуен Чонг Чык. Термонапряженное состояние бетонных гравитационных плотин: Дис. … канд. техн. наук. М., 2020. 159 с.
1. Nguyen Trong Chuc. Thermal stress state of concrete gravity dams. Diss… Candidate of Sciences (Engineering). Moscow. 2020. 159 p. (In Russian).
2. Нгуен Чонг Чык, Танг Ван Лам, Булгаков Б.И., Александрова О.В., Ларсен О.А., Булычева А.С., Макарова М.Н. Оценка возможности появления трещин в мостовой опоре автомобильной эстакады в раннем возрасте твердения бетона // Вестник БГТУ им. В.Г. Шухова. 2018. № 10. С. 33–42. DOI: 10.12737/article_5bd95a725020e3.98104960
2. Nguyen Trong Chuc, Tang Van Lam, Bulgakov B.I., Alexandrova O.V., Larsen O.A., Bulycheva A.S., Makarova M.N. Assessment of the possibility of cracks in the bridge support of the road overpass in the early age concrete. Vestnik of BSTU named after V.G. Shukhov. 2018. No. 10, pp. 33–32. (In Russian). DOI: 10.12737/article_5bd95a725020e3.98104960
3. ACI Committee 207 – Mass and thermally controlled concrete. 2017. 34 p.
4. Лотов В.А. О взаимодействии частиц цемента с водой или вариант механизма процессов гидратации и твердения цемента // Известия Томского политехнического университета. Инжиниринг георесурсов. 2018. Т. 329. № 1. С. 99–110.
4. Lotov V.A. Interaction of cement particles with water or mechanism of hydration and hardening of cement. Vestnik of the Tomsk Polytechnic University. Geo Аssets Engineering. 2018. Vol. 329. No. 1, pp. 99–110. (In Russian).
5. Разумейчик В.С. Структурно-химическое моделирование гидратации цементного композита // Вестник Брестского государственного технического университета. Сер. Строительство и архитектура. 2006. № 1. С. 91–96.
5. Razumeychik V.S. Structural-chemical modeling of hydration of cement composite. Vestnik of Brest State Technical University. Series: Construction and architecture. 2006. No. 1, pp. 91–96. (In Russian).
6. Фомина Н.Н., Кебедов М.Б. Применение методов калориметрии в исследовании процессов гидратации портландцемента // Техническое регулирование в транспортном строительстве. 2016. № 1 (15). С. 26–28.
6. Fomina N.N., Kebedov M.B. Application by calorimetry in the study of cement hydration arts. Tekhnicheskoe regulirovanie v transportnom stroitel’stve. 2016. No. 1 (15), pp. 26–28. (In Russian).
7. Korea Concrete Institute. Thermal crack control of mass concrete (Manual). 2010. 234 p.
8. Barbara K., Maciej B., Maciej P., Aneta Z. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia Engineering. 2017. Vol. 193, pp. 234–241. https://doi.org/10.1016/j.proeng.2017.06.209
9. Nikolay Aniskin, Nguyen Trong Chuc, Hoang Quoc Long. Influence of size and construction schedule of massive concrete structures on its temperature regime. MATEC Web of Conferences. 2018. Vol. 251. 02014. https://doi.org/10.1051/matecconf/201825102014
10. Nguyen T.C., Bui A.K. Evaluation of the impact of parameter inputs of concrete mix on the distribution of temperature in the mass concrete structure. Structural Integrity and Life. 2019. Vol. 19. No. 1, pp. 8–12.
11. Japan Concrete Institute. Guidelines for control of cracking of mass concrete. 2016. 302 p.
12. Кузнецова Т.В., Талабер Й. Глиноземистый цемент. М: Стройиздат, 1988. 272 c.
12. Kuznetsova T.V., Talaber I. Glinozemnistyi tsement [Alumina cement]. Moscow: Stroiizdat. 1988. 272 p.
13. Panesar D.K., Zhang R. Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials. 2020. Vol. 251. 118866. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118866
14. Баженов Ю.М. Технология бетона. М.: АСВ, 2011. 524 с.
14. Bazhenov Yu. M. Tekhnologiya betona [Concrete technology]. Moscow: ASV. 2011. 524 p.
15. Танг В.Л., Нгуен З.Т.Л., Самченко С.В. Влияние золошлакового отхода на свойства сульфоалюминатного портландцемента // Вестник МГСУ. 2019. № 8. С. 991–1003. DOI: 10.22227/1997-0935.2019.8.991-1003
15. Tang V.L., Nguyen D.T.L., Samchenko S.V. The influence of the addition of ash and slag waste on the properties of sulfoaluminate Portland cement. Vestnik of MSUCE. 2019. No. 8, pp. 991–1003. (In Russian). DOI: 10.22227/1997-0935.2019.8.991-1003

For citation: Nguyen T.C., Tang V.L., Bulgakov B.I. Determination of adiabatic temperature in hardening concrete according to different standards. Stroitel’nye Materialy [Construction Materials]. 2023. No. 11, pp. 39–45. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-819-11-39-45


Print   Email