The Impact of Industrial Sulfur on Fluor Anhydrite-Based Composites

Number of journal: 12-2022
Autors:

Gumeniuk A.N.,
Polyanskikh I.S.,
Gordina А.F.,
Pestereva K.D.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-65-72
УДК: 691.54:666.962

 

AbstractAbout AuthorsReferences
Industrial sulfur and fluor anhydrite are types of by-products that have been formed due to anthropogenic activities of humankind and there are significant problems with their storage and utilization as it is with all by-products. Considering the properties of those by-products (industrial sulfur and fluor anhydrite) it might be suggested that it is possible to use them to form composite building materials and these materials are likely to have optimal characteristics including strength and electrical properties. There has been investigated the using of these by-products as constituents for building materials formation and it has been confirmed that the combining of several by-products allows to increase the characteristics of materials and to widen the functional areas of such materials. In order to increase physical technical and electrical properties the amount of dispersed industrial sulfur is to be varied. To analyze changes in physical technical and physical chemical properties of the materials wide range of common testing technique have been applied combining with up-to-date techniques including scanning electron microscopy, X-ray analysis and IR-analysis energy dispersive spectroscopy. It was found out that when 10% of industrial sulfur is in the composite then in 28 days of hardening compressive strength is 35.5 MPa, coefficient of softening is 0.69, volume resistivity is 35.5 kOm·cm. All that changes are due to interaction between industrial sulfur while it is transforming its polymorphic state (transformation α form to β form) while heat treatment and constituents of fluor anhydrite. Results show that it is possible to form a building material that consists of by-products only and its properties equals to common materials in terms of technical and economical aspects.
A.N. GUMENYUK, Engineer (Аssistant) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.F. GORDINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.D. PESTEREVA, student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Курмангалиева А.И., Аниканова Л.А., Волкова О.В., Кудяков А.И., Саркисов Ю.С., Абзаев Ю.А. Активация процессов твердения фторангидритовых композиций химическими добавками солей натрия // Известия вузов. Химия и химическая технология. 2020. Т. 63. № 8. С. 73–80. DOI: 10.6060/ivkkt.20206308.6137
1. Kurmangalieva A.I., Anikanova L.A., Volkova O.V., Kudyakov A.I., Sarkisov Y.S., Abzaev Y.A. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Russian Journal of Chemistry and Chemical Technology. 2020. Vol. 63. No. 8, pp. 73–80. DOI 10.6060/ivkkt.20206308.6137
2. Manjit Singh, Mridul Garg Making of anhydrite cement from waste gypsum. Cement and Concrete Research. 2000. No. 30, pp. 571–577. DOI: 10.1016/S0008-8846(00)00209-X
3. Kamarou M., Korob N., Kwapinski W., Romanovski V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. Journal of Industrial and Engineering Chemistry. 2021. No. 100, pp. 324–332. https://doi.org/10.1016/j.jiec.2021.05.006
4. Romanovski V., Klyndyuk A., Kamarou M. Green approach for low-energy direct synthesis of anhydrite from industrial wastes of lime mud and spent sulfuric acid. Journal of Environmental Chemical Engineering. 2021. Vol. 9 (6). https://doi.org/10.1016/j.jece.2021.106711
5. Gijbels K., Pontikes Y., Samyn P., Schreurs S., Schroeyers W. Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Constructions. 2020. Vol. 10 (2). https://doi.org/10.1016/j.cemconres.2020.106054
6. Azad N.M, Samarakoon S.M. Utilization of industrial by-products/waste to manufacture geopolymer cement/concrete. Sustainability. 2021. Vol. 13 (2). 873. https://doi.org/10.3390/su13020873
7. Singh M., Garg M. Activation of fluorogypsum for building materials. Journal of Scientific and Industrial Research. 2009. No. 68, pp. 130–134.
8. Korolev E.V., Smirnov V.A., Evstigneev A.V. Nanostructure of matrices of sulfur building composites: methodology, methods, instrumentation. Nanotechnology in construction: scientific online journal. 2014. No. 6, pp. 106–148. DOI: 10.15828/2075-8545-2014-6-6-106-148
9. Скрипунов Д.А., Филатова О.Е., Алехина М.Н., Власова Н.Е. Современное состояние производства и использования серы в России // Химическая промышленность сегодня. 2014. № 12. С. 6–14.
9. Skripunov D.A., Filatova O.E., Alekhina M.N., Vlasova N.E. The current state of production and use of sulfur in Russia. Chemical industry today. 2014. No. 12, pp. 6–14. (In Russian).
10. Скрипунов Д.А., Филатова О.Е. и др. Проблема избыточной серы в газах, пути решения. Газохим 2011: Материалы II Международной конференции. Москва: Газпром ВНИИГАЗ. 2011.
10. Skripunov D.A., Filatova O.E. and others. The problem of excess gas sulfur, solutions. Gasochem 2011: materials of the II International Conference. Moscow: Gazprom VNIIGAZ. 2011. (In Rusian).
11. Moon J., Kalb P.D., Milian L. Characterization of a sustainable sulfur polymer concrete using activated fillers. Cement and Concrete Composites. 2016. Vol. 67, pp. 20–29. https://doi.org/10.1016/j.cemconcomp.2015.12.002
12. Галдина В.Д. Серобитумные вяжущие: Монография. Омск: СибАДИ, 2011. 124 с.
12. Galdina V.D. Serobitumnye vyazhushchie [Sulfur-bituminous binders: monograph]. Omsk: SibADI, 2011. 124 p.
13. Diez S., Hoefling A., Theato P., Pauer W. Mechanical and electrical properties of sulfur-containing polymeric materials prepared via inverse vulcanization. Polymers. 2017. Vol. 9(2). https://doi.org/10.3390/polym9020059
14. Rasheed M.F., Rahim A., Irfan-ul-Hassan M. et al. Sulfur concrete made with waste marble and slag powders: 100% recycled and waterless concrete. Environmental Science and Pollution Research. 2022. Vol. 29, pp. 65655–65669.
15. Dugarte M., Martinez-Arguelles G., Torres J. Experimental evaluation of modified sulfur concrete for achieving sustainability in industry applications. Sustainability. 2019. No. 11. https://doi.org/10.3390/su11010070
16. Milica M. Vlahovic, Sanja P. Martinovic, Tamara Dj. Boljanac, Predrag B. Jovanic, Tatjana D. Volkov-Husovic. Durability of sulfur concrete in various aggressive environments. Construction and Building Materials. 2011. No. 25, pp. 3926–3934. doi:10.1016/j.conbuildmat.2011.04.024
17. Rimkevicius M., Kaminskas A. Mechaniskai aktyvinto ekstrakcino pusvandenio fosfogipso savybes. J. Civ. Eng. Manag. 2003. No. 9, pp. 49–54.
18. Kosenko N.F., Belyakov A.S., Smirnova M.A. Effect of mechanical activation procedure on the phase composition of gypsum. Inorganic Materials. 2010. No. 5, pp. 545–550.
19. Кудяков А.И., Аниканова Л.А., Редлих В.В., Саркисов Ю.С. Влияние сульфата и сульфита натрия на процессы структурообразования фторангидритовых композиций // Строительные материалы. 2012. № 10. С. 50–52.
19. Kudyakov A.I., Anikanova L.A., Redlich V.V. Influence of sodium sulfate and sulfite on the processes of structure formation of fluoroanhydrite compositions. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 50–52. (In Rusian).
20. Будников П.П., Зорин С.П. Ангидритовый цемент. M.: Государственное издательство литературы по строительным материалам, 1954. 93 c.
20. Budnikov P.P., Zorin S.P. Angidritovyy tsement [Anhydrite cement]. Moscow: State publishing house of literature on building materials.1954. 93 p.
21. Аниканова Л.А., Кудяков А.И., Ковлер К. Управление процессами структурообразования вяжущих, стеновых и отделочных материалов на основе фторангидритового сырья. Повышение качества и эффективности строительных и специальных материалов: Сборник Национальной научно-технической конференции с международным участием. 18–22 февраля 2019 г. Новосибирск. С. 106–110.
21. Anikanova L.A., Kudyakov A.I., Kovler K. Сontrol of the structure formation of binding, wall and decorating materials based on fluoroanhydrite raw materials. In the collection: improving the quality and efficiency of building and special materials. Collection of the National Scientific and Technical Conference with International Participation. 2019. pp. 106–110. (In Rusian)
22. Аниканова Л.А. Эффективность использования фторангидрита в производстве стеновых и отделочных материалов // Вестник Томского государственного архитектурно-строительного университета. 2015. № 1. С. 163–171.
22. Anikanova L.A. Efficient use of acid fluoride in walling and finishing material production. Vestnik of Tomsk state university of architecture and building. 2015. No. 1, pp. 163–171.
23. Бондаренко С.А. Модифицированное фторангидритовое вяжущее и строительные материалы на его основе: Дис. ... канд. техн. наук. Челябинск. 2008. 146 с.
23. Bondarenko S.A. Modified fluoroanhydrite binder and building materials based on it. Diss… Candidate of sciences (Engineering). Chelyabinsk. 2008. 146 p. (In Rusian).
24. Joseph C.G., Taufiq-Yap Y.H., Krishnan V., Li Puma G. Application of modified red mud in environmentally-benign applications: A review paper. Environmental Engineering Research. 2022. Vol. 25 (1). https://doi.org/10.4491/eer.2019.374
25. Arunothayan A.R., Nematollahi B., Ranade R., Khayat K.H., Sanjayan J.G. Digital fabrication of eco-friendly ultra-high-performance fiber-reinforced concrete. Cement and Concrete Composites. 2022. Vol. 125. https://doi.org/10.1016/j.cemconcomp.2021.104281
26. Rosales J, Gázquez M, Cabrera M, Bolivar JP, Francisco Agrela. Application of phosphogypsum for the improvement of eco-efficient cements. Waste and Byproducts in Cement-Based Materials. Innovative Sustainable Materials for a Circular Economy. Woodhead Publishing Series in Civil and Structural Engineering. 2021, pp. 153–189. https://doi.org/10.1016/B978-0-12-820549-5.00016-4
27. Патуроев В.В. Полимербетоны. М.: Стройиздат; НИИ бетона и железобетона, 1987. 286 с.
27. Paturoev V.V. Polimerbetony [Polymer concretes]. Moscow: Stroyizdat, Research Institute of Concrete and Reinforced Concrete. 1987. 286 p.
28. Romanovski V., Klyndyuk A., Kamarou M. Green approach for low-energy direct synthesis of anhydrite from industrial wastes of lime mud and spent sulfuric acid. Journal of Environmental Chemical Engineering. 2021. Vol. 9 (6). https://doi.org/10.1016/j.jece.2021.106711
29. Zhakupova G, Sadenova M.A., Varbanov P.S., Possible alternatives for cost-effective neutralisation of fluoroanhydrite minimising environmental impact. Chemical Engineering Transactions. 2019. Vol. 76. DOI: 10.3303/CET1976179
30. Rajković M., Tošković D.V. Investigation of the possibilities of phosphogypsum application for building partitioning walls-elements of a prefabricated house. Acta Periodica Technologica. 2002. Iss. 33, pp. 71–92. https://doi.org/10.2298/APT0233071R
31. Биспен Т.А., Масленников И.Г., Молдавский Д.Д. Получение фтористого водорода и плавиковой кислоты высокой чистоты // Известия Санкт-Петербургского государственного технологического института. 2016. № 33 (59). 13–18.
31. Bispen T.A., Maslennikov I.G., Moldavsky D.D. Obtaining hydrogen fluoride and high purity hydrofluoric acid. Izvestiya of the St. Petersburg State Technological Institute. 2016. No. 33 (59), pp. 13–18. (In Rusian).
32. Патент на изобретение 2760962 C1, 01.12.2021. Многофункциональный состав на основе термопластичного отхода топливно-энергетического комплекса и способ его приготовления / Гуменюк А.Н., Гордина А.Ф. Заявка № 2020133692 от 13.10.2020.
32. Patent for an invention. 2760962 C1, 12/01/2021. Multifunctional composition based on thermoplastic waste from the fuel and energy complex and method for its preparation. Gumenyuk A.N., Gordina A.F. Application No. 2020133692 dated 10/13/2020. (In Rusian).
33. Гуменюк А.Н., Полянских И.С., Первушин Г.Н., Гордина А.Ф., Яковлев Г.И., Хазеев Д.Р. Структу-рирующая добавка на основе отхода производства для минеральных вяжущих // Строительные материалы. 2019. № 7. С. 41–46. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-41-46
33. Gumeniuk A.N., Polyanskikh I.S., Pervushin G.N., Gordina A.F., Yakovlev G.I., Khazeev D.R. Structuring additive based on production waste for mineral binders. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 41–46. (In Rusian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-41-46
34. Kamarou M., Korob N., Kwapinski W., Romanovski V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. Journal of Industrial and Engineering Chemistry. 2021. Vol. 100, pp. 324-332. https://doi.org/10.1016/j.jiec.2021.05.006
35. Dehghanpour H., Yilmaz K., Ipek M. Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Construction and Building Materials. 2019. Vol. 221, pp. 109–121. https://doi.org/10.1016/j.conbuildmat.2019.06.025
36. Hong S.H., Choi J.S., Yuan T.F., Yoon Y.S. Mechanical and electrical characteristics of lightweight aggregate concrete reinforced with steel fibers. Materials. 2021. Vol. 14 (21). https://doi.org/10.3390/ma14216505
37. Schultz J. Conductive material prevents build-up of static electricity. AORN journal. 1970. Vol. 27 (6), pp. 1226–1228. https://doi.org/10.1016/S0001-2092(07)60644-9
38. Garcia-Macias E., D’Alessandro A., Castro-Trigue-ro R., Pérez-Mira D., Ubertini F. Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Composites Part B: Engineering. 2016. Vol. 108, pp. 451–469. https://doi.org/10.1016/j.compositesb.2016.10.025
39. Hong S.-H., Choi J.-S., Yuan T.-F., Yoon Y.-S. Mechanical and electrical characteristics of lightweight aggregate concrete reinforced with steel fibers. Materials. 2021. 14. 6505. https://doi.org/10.3390/ma14216505
40. Brencich A., Lątka D., Matysek P., Orban Z., Sterpi E. Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests. Construction and Building Materials. 2021. Vol. 306. 124494. DOI: 10.1016/j.conbuildmat.2021.124494

For citation: Gumeniuk A.N., Polyanskikh I.S., Gordina А.F., Pestereva K.D. The impact of industrial sulfur on fluor anhydrite-based composites. Stroitel’nye Materialy [Construction Materials]. 2022. No. 12, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-809-12-65-72


Print   Email