Properties of Cement Matrices with Increased Electrical Conductivity

Number of journal: No.1-2-2021
Autors:

Yakovlev G.I.,
Vit Černy,
Pudov I.A.,
Polyanskikh I.S.,
Saidova Z.S.,
Begunova E.V.,
Semenova S.N.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-11-20
УДК: 691.3:539.2

 

AbstractAbout AuthorsReferences
The modification of silicate composites is an urgent task in building materials science. There is a growing demand on the market for the materials with peculiar properties, suitable for operation in specific conditions. Examples of such materials can be those that have electrically conductive properties, which can be obtained through the addition of conductive functional additives. In this research, the composition of an electrically conductive concrete was developed and its mechanical properties, electrical conductivity, and the microstructure were studied. X-ray microanalysis was also carried out in order to study the chemical composition of the hydration products and modifying additives in the hardened matrix. The additives that were used for the modification of the composition included electrically conductive nickel/carbon nanostructures and dispersed chrysotile nanofibers in combination with a solution of calcium nitrate. Methods for the manufacture and functionalization of additives before their introduction into the cement matrix are described. As a result of the Ni/C nanocomposite introduction, an increase in the strength characteristics and a decrease in electrical resistance of the modified composite are noted, which are due to structural changes in the cement matrix. X-ray microanalysis indicated the formation of new structures in the modified cement matrix. However, the electrical conductivity of the composite with Ni/C dispersions does not show stability and decreases with time. The second part of the research shows the results of the cement matrix modification with a calcium nitrate solution added into the composition together with chrysotile nanofibers. In this case, an ultrafine suspension was preliminary prepared, which made it possible to stabilize the electrical resistivity values during the hardening of the cement stone. It is assumed that the combined introduction of Ni/C nanocomposites with a solution of chemical salts will also allow the stabilization of the electrical resistivity of the composition during hardening.
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Vit ERNY2, Dr.-Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. PUDOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Z.S. SAIDOVA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. SEMYONOVA1, Engineer (post-graduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. BEGUNOVA1, Engineer (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Faculty of Civil Engineering, Brno University of Technology (Veveří 331/95, 602 00 Brno, Czech Republic)

1. Li Z., Ding S., Yu X., B. Han, J. Ou. Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing. 2018. Vol. 111, pp. 115–137. DOI: 10.1016/j.compositesa.2018.05.019.
2. You I., Yoo D.-Y., Kim S., Kim M.-J., Zi G. Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes. Sensors. 2017. Vol. 17, pp. 2481. DOI: 10.3390/s17112481
3. Baránek Š., Černý V., Yakovlev G., Drochytka R. Silicate conductive composites with graphite-based fillers. IOP Conf. Series: Materials Science and Engineering. 2021. 1209. DOI: 10.1088/1757-899X/1209/1/012035
4. Ramezani M., Dehghani A., Sherif M.-M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Construction and Building Materials. 2022. Vol. 315. 125100. DOI:10.1016/j.conbuildmat.2021.125100
5. Wang J., Yin J., Kong X. Influences of PCE superplasticizers with varied architectures on the formation and morphology of calcium hydroxide crystals. Cement and Concrete Research. 2022. Vol. 152. 106670. DOI: 10.1016/j.cemconres.2021.106670
6. Yakovlev G.I., Drochytka R., Skripkiunas G., Urkhanova L., Polyanskikh I., Pudov I., Karpova E., Saidova Z., Ali E.M.M. Elrefai. Effect of ultrafine additives on the morphology of cement hydration products. Crystals. 2021. Vol. 11. No. 8. 1002. DOI: 10.3390/cryst11081002
7. Yakovlev G., Polyanskikh I., Belykh V., Stepanov V., Smirnova O. Evaluation of changes in structure of modified cement composite using fractal analysis. Appl. Sci. 2021. Vol. 11. No. 9. 4139. DOI: 10.3390/app11094139
8. Караваева Н.М., Першин Ю.В., Кодолов В.И. Свойства и высокая реакционная способность металл/углеродных нанокомпозитов // Вестник Казанского технологического университета. 2017. № 19. С. 54–56.
8. Karavaeva N.M., Pershin Y.V., Kodolov V.I. Properties and high reactivity of metal/carbon nanocomposites. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2017. No. 19, pp. 54–56. (In Russian).
9. Ахметшина Л.Ф., Кодолов В.И., Терешкин И.П., Коротин А.И. Влияние углеродных металлсодержащих наноструктур на прочностные свойства бетонных композитов // Нанотехнологии в строительстве: научный интернет-журнал. 2010. № 6.
С. 35–46. http://www.nanobuild.ru/magazine/nb/Nanobuild_6_2010.pdf
9. Akhmetshina L.F., Kodolov V.I., Tereshkin I.P., Korotin A.I. Influence of carbon metal-containing nanostructures on the strength properties of concrete composites. Nanotekhnologii v stroitel’stve: scientific online journal. 2010. No. 6, pp. 35–46. (In Russian).
10. Патент РФ 2221744. Способ получения металлсодержащих углеродных наноструктур из органического соединения с добавками неорганических солей / Кодолов В.И., Дидик А.А., Волков А.Ю., Волкова Е.Г. Заявл. 08.04.2002. Опубл. 20.01.2004.
10. Patent RF 2221744 Sposob polucheniya metallsoderzhashchih uglerodnyh nanostruktur iz organicheskogo soedineniya s dobavkami neorganicheskih solej [Method to produce metal-containing carbon nanostructures from organic compound with additives of inorganic salts]. Kodolov V.I., Didik A.A., Volkov A.Yu., Volkova E.G. Declared 08.04.2002. Published 20.01.2004. (In Russian).
11. Кодолов В.И., Тринеева В.В. Перспективы развития направления самоорганизации наносистем в полимерных матрицах // Химическая физика и мезоскопия. 2011. № 3. С. 363–375.
11. Kodolov V.I., Trineeva V.V. Prospects for the development of the direction of self-organization of nanosystems in polymer matrices. Himicheskaja fizika i mezoskopija. 2011. No. 3, pp. 363–375. (In Russian).
12. Кодолов В.И., Кодолова-Чухонцева В.В., Першин Ю.В. Возможные причины снижения активности металл/углеродных нанокомпозитов и углеродных нанотрубок при подготовке к модификации ими полимерных материалов // Химическая физика и мезоскопия. 2020. № 1. С. 16–24.
12. Kodolov V.I., Kodolova-Chukhontseva V.V., Pershin Yu.V. Possible reasons for the decrease in the activity of metal/carbon nanocomposites and carbon nanotubes in preparation for their modification of polymer materials. Himicheskaja fizika i mezoskopija. 2020. No. 1, pp. 16–24. (In Russian).
13. Ахметшина Л.Ф. Разработка метода функционализации металл/углеродных нанокомпозитов и способов получения суспензий на их основе для модификации композиционных материалов. Дис. ... канд. техн. наук. Пермь, 2011. 180 с.
13. Akhmetshina L.F. Development of a method for functionalization of metal/carbon nanocomposites and methods for obtaining suspensions based on them for modifying composite materials. Diss… Candidate of Sciences (Engineering). Perm. 2011. 180 p. (In Russian).
14. Пенкаля Т.В. Очерки кристаллохимии / Пер. с пол. В.В. Макарского; Под ред. проф. В.А. Франк-Каменецкого. Л.: Химия. Ленингр. отд-ние, 1974. 496 с.
14. Penkalya T.V. Ocherki kristallohimii [Essays on crystal chemistry. Trans. from Polish Makarenko V.V. Ed. by prof. V.A. Frank-Kamenetsky. Leningrad: Khimiya publishing house. 1974. 496 p.
15. Yakovlev G.I., Černý V., Polyanskikh I.A., Gordina A.F., Pudov I.А., Gumenyuk A.В., Smirnova O.М. The effect of complex modification on the impedance of cement matrices. Materials. 2021. No. 3, pp. 557–567. https://www.mdpi.com/1996-1944/14/3/557
16. Yakovlev G.I., Begunova E.V., Drochytka R., Melichar J., Pudov I.A., Saidovа Z.S. The influence of activated dispersed additives on electrical conductivity of anhydrite compositions. Solid State Phenomena. 2021. Vol. 321, pp. 51–57. DOI: 10.4028/www.scientific.net/SSP.321.51
17. Černý V.,Yakovlev G.I., Drochytka R., Baránek Š., Mészárosová L., Melichar J. and Hermann R. Impact of carbon particle character on the cement-based composite electrical resistivity. Materials. 2021. Vol. 14. No. 24. 7505. DOI:10.3390/ma14247505
18. Zhiyong Liu, Yuncheng Wang, Dong Xu, Chuyue Zang, Yunsheng Zhang, Jinyang Jiang. Multiple ions transport and interaction in calcium silicate hydrate gel nanopores: Effects of saturation and tortuosity. Construction and Building Materials. 2021. Vol. 283. 122638. DOI: 10.1016/j.conbuildmat.2021.122638
19. Патент РФ RU 2681624C1. Лабораторная установка для диспергирования текучих эмульсий и суспензий / Пудов И.А., Яковлев Г.И., Грахов В.П., Шайбадуллина И.В., Первушин Г.Н., Полян-ских И.С., Гордина А.Ф., Хазеев Д.Р., Карпова Е.А. Заявл. 02.08.2018. Опубл. 11.03.2019. Бюл. № 8.
19. Patent RF RU 2681624C1. Laboratornaya ustanovka dlya dispergirovaniya teuchih emul’siy i suspeziy [Laboratory installation for dispersion of fluid emulsions and suspensions]. Pudov I.A., Yakovlev G.I., Grakhov V.P., Shaibadullina I.V., Pervushin G.N., Polyanskikh I.S., Gordina A.F., Khazeev D.R., Karpova E.A. Declared 02.08.2018. Published 11.03.2019. Bulletin No. 8. (In Russian).
20. Saidovа Z.S.,Yakovlev G.I., Smirnova O.M., Gordina A.F., Kuzmina N. Modification of cement matrix with complex additive based on chrysotyl nanofibers and carbon black. Applied Sciences (Switzerland). 2021. Vol. 11. No. 15. DOI: 10.3390/app11156943

For citation: Yakovlev G.I., Vit Černy, Pudov I.A., Polyanskikh I.S., Saidova Z.S., Begunova E.V., Semenova S.N. Properties of cement matrices with increased electrical conductivity. Stroitel’nye Materialy [Construction Materials]. 2022. No. 1–2, pp. 11–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-11-20


Print   Email