Prediction of the Stress-Optical Coefficient of Multilayer Polymer Materials

Number of journal: 11-2022
Autors:

Matseevich T.A.,
Askadskii A.A.,
Merkulov S.A.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-76-80
УДК: 675.043.84

 

AbstractAbout AuthorsReferences
A method for predicting the stress-optical coefficient of multilayer polymeric materials is described. The prediction is based on the chemical structure of the polymer layers. All analyzes were carried out for network polymers based on cured cycloaliphatic epoxy resin, as well as on the basis of polyisocyanurates, consisting of products of the chemical interaction of 2,4-toluenediisocyanates and glycols of various chemical structures. The highest coefficient reaches 192 Brewster and the smallest coefficient is 97 Brewster. Thus, the stress-optical coefficient always remains high for the three-layer network polymers considered in the article. These polymers can be used in the photo-elasticity method for building models of full-scale building structures.
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII1,2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.A. MERKULOV1, Undergraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federation)

1. Синтез и изучение свойств оптически чувствительных материалов. Сборник научных трудов Под общ. ред. Г.Л. Хесина и А.А. Аскадского. М.: МИСИ им. В.В. Куйбышева, 1987. 220 с.
1. Synthesis and study of the properties of optically sensitive materials. Collection of scientific works under the general editorship of G.L. Khesin and A.A. Askadsky. Moscow: MISI im. V.V. Kuibysheva, 1987. 220 p. (In Russian).
2. Szczurowski Marcin K., Martynkien Tadeusz, Statkiewicz-Barabach Gabriela, Urbanczyk Waclaw, Khan Lutful, and Webb David J. Measurements of stress-optic coefficient in polymer optical fibers. Optics Letters. 2010. Vol. 35. No. 12, pp. 2013–2015.
3. Ohkita H., Ishibashi K., Tsurumoto D., Tagaya A., Koike Y. Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule. Applied Physics A: Materials Science and Processing. 2005. Vol. 81, pp. 617–620.
4. Koyama T., Zhu Y., Otsuka T., Takada T., Murooka Y. An automatic measurement system for 2-dimensio-nal birefringence vector distribution. ICSD’98. Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (Cat. No.98CH36132). 1998, pp. 557–560. DOI: 10.1109/ICSD.1998.709346
5. Xu W., Yao X. F. Yeh H.Y., Jin G.C. Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology. Polymer Testing. 2005. Vol. 24. Iss. 7, pp. 900–908. https://doi.org/10.1016/j.polymertesting.2005.06.005
6. Waxler R.M., Horowitz D., Feldman A. Optical and physical parameters of Plexiglas 55 and Lexan. Applied Optics. 1979. Vol. 18. Iss. 1, pp. 101–104. https://doi.org/10.1364/AO.18.000101
7. Lee Y.C., Liu T.S., Wu C.I., Lin W.Y. Investigation on residual stress and stress-optical coefficient for flexible electronics by photoelasticity. Measurement, 2012, Vol. 45, pp. 311–316.
8. Fiber Optic Sensors. An Introduction for Engineers and Scientists. Edited by Eric Udd. John Wiley & Sons, lnc. 2006. 518 p.
9. D.W. van Krevelen, Klaas te Nijenhuis. Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier. 2009. 1030 p.
10. Jong Sun Kim, Kyung Hwan Yoon, Julia A. Konfield. Measurement of stress-optical coefficient of COCs with different composition. Key Engineering Materials. 2006. Vol. 326–328, pp. 183–186. https://doi.org/10.4028/www.scientific.net/KEM.326-328.183
11. Аскадский А.А., Прозорова С.Н., Слонимский Г.Л. Оптико-механические свойства ароматических теплостойких полимеров. Высокомолекулярные соединения. Серия А. 1976. Т. 18. № 3. С. 636–647.
11. Askadskii A.A., Prozorova S.N., Slonimskii G.L. Optical-mechanical properties of aromatic heat-resistant polymers. Vysokomolekulyarnyye soyedine-niya. Seriya A. 1976. Vol. 18, No. 3, pp. 636–647. (In Russian).
12. Аскадский А.А., Маршалкович А.С., Матвеева Т.П. Прогнозирование оптико-механических свойств полимеров, применяемых в методе фотоупругости. Механика композитных материалов. 1983. № 3. С. 906–913.
12. Askadskii A.A., Marshalkovich A.S., Matveeva T.P. Prediction of optical-mechanical properties of polymers used in the photoelasticity method. Mekhanika kompozitnykh materialov. 1983. No. 3, pp. 906–913. (In Russian).
13. Аскадский А.А., Пастухов А.В., Маршалкович А.С. Прогнозирование некоторых физических характеристик и получение оптически чувствительных эпоксидных полимеров. Высокомолекулярные со-единения. Серия А. 1984. Т. 26. № 1. С. 160–171.
13. Askadskii A.A., Pastukhov A.V., Marshalkovich A.S. Prediction of some physical characteristics and production of optically sensitive epoxy polymers. Vysokomolekulyarnyye soyedineniya. Seriya A. 1984. Vol. 26. No. 1, pp. 160–171. (In Russian).

For citation: Matseevich T.A., Askadskii A.A., Merkulov S.A. Forecasting the stress-optical coefficient of multilayer polymeric materials. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 76–80. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-76-80


Print   Email