Porosity and Strength of Composite Cement Based on Fine High-Calcium Fly Ash

Number of journal: 7-2022
Autors:

Sharonova O.M.,
Yumashev V.V.,
Anshits A.G.

DOI: https://doi.org/10.31659/0585-430X-2022-804-7-33-39
УДК: 666.9

 

AbstractAbout AuthorsReferences
The binding properties of high-strength and ultra-high-strength composite ash-cement materials were studied with the replacement of Portland cement (PC) by 80–90% with fine high-calcium fly ash (HCFA), selected from the 4th field of the electrostatic precipitators of the ash collection unit. For effective dispersion, the addition of polycarboxylate superplasticizer Melflux 5581F was used. The total porosity, pore size distribution and strength of composite materials were determined in the process of long-term hardening. It has been established that for high-strength composite materials containing 90% HCFA, 10% PC and 0.12% Melflux 5581F superplasticizer, the compressive strength increases from 35 to 78 MPa during hardening from 4 to 67 days, which is accompanied by an increase in mesopore volume in the range of 20–500 Å and a shift of the maximum of the pore size distribution from 41 to 29 Å. For ultrahigh-strength composite materials of the composition 80% HCFA, 20% PC, 0.3% Melflux 5581F, and 5% microsilica, the strength increases from 108 to 137 MPa upon hardening from 28 to 50 days. They are characterized by a lower total porosity due to a decrease in the contribution of macropores larger than 500 Å. In the pore size distribution, in addition to the maximum at 45–48 Å, an additional maximum at 32 Å develops during long-term hardening.
O.M. SHARONOVA1, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. YUMASHEV1, Leading engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.G. ANSHITS1,2, Doctor of Sciences (Chemistry), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences” (50/24, Akademgorodok, Krasnoyarsk, 660036, Russian Federation)
2 Siberian Federal University (79, Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation)

1. Аникеев В., Силка Д. От отходов угольных электростанций к производству строительных материалов // Энергетическая политика. 28.01.2021. https://energypolicy.ru/ot-othodov-ugolnyh-elektrostanczij-k-proizvodstvu-stroitelnyh-materialov/ugol/2021/14/28/
1. Anikeev V., Silka D. From the waste of coal-fired power plants to the production of building materials. Energy policy. 01/28/2021. https://energypolicy.ru/ot-othodov-ugolnyh-elektrostanczij-k-proizvodstvu-stroitelnyh-materialov/ugol/2021/14/28/ (In Russian).
2. Belviso C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Progress in Energy and Combustion Science. 2018. Vol. 65, pp. 109–135. DOI: http://dx.doi.org/10.1016/j.pecs.2017.10.004
3. Гурьева В.А., Дорошин А.В., Ильина А.А. Модифицированные золошлаковые отходы в производстве керамического кирпича полусухого прессования // Строительные материалы. 2021. № 12. С. 28–33. DOI: https://doi.org/10.31659/0585-430X-2021-798-12-28-33
3. Gur’eva V.A., Doroshin A.V., Il’ina A.A. Modified ash and slag waste in the production of semi-dry pressed ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2021. No. 12, pp. 28–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-798-12-28-33
4. Lothenbach B., Scrivener K., Hooton R.D. Supple-mentary cementitious materials. Cement and Concrete Research. 2011. Vol. 41, pp. 1244–1256. DOI: http://dx.doi.org/10.1016/j.cemconres.2010.12.001
5. Chindasiriphan P., Yokota H., Pimpakan P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Construction and Building Materials. 2020. Vol. 233. 116975. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116975
6. Ahari R.S., Erdem T.K., Ramyar K. Permeability properties of self-consolidating concrete containing various supplementary cementitious materials. Construction and Building Materials. 2015. Vol. 79, pp. 326–336. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2015.01.053
7. Choudhary R., Gupta R., Nagar R. Impact on fresh, mechanical, and microstructural properties of high strength self-compacting concrete by marble cutting slurry waste, fly ash, and silica fume. Construction and Building Materials. 2020. Vol. 239. 117888. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117888
8. Yu J., Lu C., Leung Ch.K.Y., Li G., Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Construction and Building Materials. 2017. Vol. 147, pp. 510–518. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.04.188
9. Han X., Yang J., Feng J., Zhou C., Wang X. Research on hydration mechanism of ultrafine fly ash and cement composite. Construction and Building Materials. 2019. Vol. 227. 116697. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116697
10. Shaikh F.U.A., Supit S.W.M. Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and Building Materials. 2015. Vol. 82, pp. 192–205. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.068
11. Zeng Q., Li K., Fen-chong T., Dangla P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cement and Concrete Research. 2012. Vol. 42, pp. 194–204. DOI: https://doi.org/10.1016/j.cemconres.2011.09.012
12. Yang J., Su Y., He X., Tan H., Jiang Y., Zeng L., Strnadel B. Pore structure evaluation of cementing composites blended with coal byproducts: Calcined coal gangue and coal fly ash. Fuel Processing Technology. 2018. Vol. 181, pp. 75–90. DOI: https://doi.org/10.1016/j.fuproc.2018.09.013
13. Sharonova O.M., Solovyov L.A., Oreshkina N.A., Yumashev V.V., Anshits A.G. Composition of high-calcium fly ash middlings selectively sampled from ash collection facility and prospect of their utilization as component of cementing materials. Fuel Processing and Technology. 2010. Vol. 91, pp. 573–581. DOI: http://dx.doi.org/10.1016/j.fuproc.2010.01.00
14. Zhao Y., Zhang J., Tian C., Li H., Shao X., Zheng C. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in China. Energy and Fuels. 2010. Vol. 24, pp. 834–843. DOI: http://dx.doi.org/10.1021/ef900947y
15. Шаронова О.М., Юмашев В.В., Соловьев Л.А., Аншиц А.Г. Тонкодисперсная высококальциевая летучая зола как основа композитного цементирующего материала // Инженерно-строительный журнал. 2019. Вып. 91. С. 60–72. DOI: http://dx.doi.org/10.18720/MCE.91.6
15. Sharonova O.M., Yumashev V.V., Solovyov L.A., Anshits A.G. The fine high-calcium fly ash as the basis of composite cementing material. Magazine of Civil Engineering. 2019. Vol. 91, pp. 60–72. DOI: http://dx.doi.org/10.18720/MCE.91.6
16. Sharonova O.M., Kirilets V.M., Yumashev V.V., Solovyov L.A., Anshits A.G. Phase composition of high strength binding material based on fine microspherical high-calcium fly ash. Construction and Building Materials. 2019. Vol. 216, pp. 525–530. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.201
17. Ilic M., Cheeseman C., Sollars C., Khight J. Mineralogy and microstructure of sintered lignite coal fly ash. Fuel. 2003. Vol. 82, pp. 331–336. DOI: https://doi.org/10.1016/S0016-2361(02)00272-7
18. Tishmark J.K., Olek J., Diamond S., Sahu S. Characterization of pore solutions expressed from high-calcium fly-ash-water pastes. Fuel. 2001. Vol. 80, pp. 815–819. DOI: https://doi.org/10.1016/S0016-2361(00)00160-5
19. Sharonova O. M., Anshits N.N., Fedorchak M. A., Zhizhaev A.M. , Anshits A.G. Characterization of ferrospheres recovered from high-calcium fly ash. Energy Fuels. 2015. Vol. 29, pp. 5404–5414. https://doi.org/10.1021/acs.energyfuels.5b01618
20. Paweł T. Durdziński, Cyrille F. Dunant, Mohsen Ben Haha, Karen L. Scrivener. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste. Cement and Concrete Research. 2015. Vol. 73, pp. 111–122. DOI: http://dx.doi.org/10.1016/j.cemconres.2015.02.008
21. Papayianni I., Anastasion E. Development of self compacting concrete (SCC) by using high volume of cslcareous fly ash. 2011 World of Coal Ash (WOCA) Conference. May 2–12, 2011. Denver, CO, USA. http://www.flyash.info
22. Li Z. Advanced concrete technology. New Jersey: Wiley & Sons, 2011. 506 p. https://epdf.pub/advanced-concrete-technology.html
23. Giergiczny Z., The hydraulic activity of high calcium fly ash. Journal of Thermal Analysis and Calorimetry. 2006. Vol. 83, pp. 227–232. DOI: http://dx.doi.org/10.1007/s10973-005-6970-7
24. Blissett, R.S., Rowson, N.A. A review of the multi-component utilization of coal fly ash. Fuel. 2012. Vol. 97, pp. 1–23. DOI: https://doi.org/10.1016/j.fuel.2012.03.024
25. Taylor H.F.W. Cement Chemistry. 2nd Edition. Tomas Telford, London, 1997. https://www.icevirtuallibrary.com/doi/book/10.1680/cc.25929

For citation: Sharonova O.M., Yumashev V.V., Anshits A.G. Porosity and strength of composite cement based on fine high-calcium fly ash. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 33–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-33-39


Print   Email