Options for the Introduction of a Finely Dispersed Additive Based on Perlite into Cement Mixtures

Number of journal: 11-2022
Autors:

Kozlova I.V.,
Zemskova O.V.,
Lekanov N.A.

DOI: https://doi.org/10.31659/0585-430X-2022-808-11-42-49
УДК: 666.96

 

AbstractAbout AuthorsReferences
The article discusses the options for introducing a fine perlite additive into the composition of a cement system. One of the options for the introduction of fine perlite is dry mixing of the additive with cement, followed by mixing with water with a polycarboxylate plasticizer. The second option is the introduction of a stabilized suspension of finely dispersed perlite into the cement. It was found that suspensions with a fine perlite content of 1–3% and polycarboxylate plasticizer 0.3–0.5%, subjected to ultrasonic treatment, have the greatest aggregative and sedimentation stability. It was revealed that the homogenization of the suspension is ensured by ultrasonic exposure, stabilization is achieved by fixing the functional groups of polycarboxylate on the surface of fine perlite particles. The use of a complex method of homogenization and stabilization of the suspension contributes to the uniformity of the distribution of perlite particles in the volume of the cement system, which leads to an acceleration of hydration processes.
I.V. KOZLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. ZEMSKOVA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.A. LEKANOV, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Zhernovoi F.E., Miroshnikov E.V., Zhernovaya N.F. Perlite Mukhor-Tala as a glass raw material. Vestnik of the Belgorod State Technological University named V.G. Shukhov. 2012. No. 3, pp. 32–36. (In Russian).
2. Dalakishvili A.I. Glass formation processes in perlite- and obsidian-containing batches. Fizika i khimiya stekla. 2005. Vol. 31. No. 6, pp. 1128–1132. (In Russian).
3. Samkharadze N.Ya., Chokhonelidze M.I., Machava-riani Z.P., Gelashvili N.V. Prospects for expanding the resource base and increasing the production of perlite in Georgia. Gornyy zhurnal. 2004. No. 4, pp. 78–80. (In Russian).
4. Mikshis L.P. Perlites of the polar Urals - raw materials for the construction industry. Gornyye vedomosti. 2006. No. 2 (21), pp. 64–67. (In Russian).
5. Toturbiev A.B., Cherkashin V.I., Toturbiev B.D., Toturbieva U.D. Perlite thermal insulation material based on nanodispersed polysilicate sodium binder. Promyshlennoye i grazhdanskoye stroitel’stvo. 2016. No. 3, pp. 20–24. (In Russian).
6. Balykova L.I., Saraykina I.P. Heat-insulating materials based on Kamchatka perlite. Vestnik Kamchatskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. No. 9, pp. 15–20. (In Russian).
7. Zin Min Htet, Tikhomirova I.N. Heat insulation material on the basis of expanded perlite and expanded mineral binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 107–112. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-107-112
8. Solovieva L.N., Radchenko D.S. Heat-insulating concrete based on expanded perlite production waste. Resource-Energy-Efficient Technologies in the Regional Construction Complex. 2013. No. 3, pp. 177–181. (In Russian).
9. Rakhmanova I.A., Sarkisov Yu.S., Vereshchagin V.I. Thermal insulation materials based on perlite and vermiculite. Vestnik of the Tomsk State University of Architecture and Civil Engineering. 2013. No. 2 (39), pp. 257–262. (In Russian).
10. Vysotskaya M.A., Fedorov M.Yu., Kuznetsov D.A. Adsorption and structuring activity of perlite as a filler for asphalt concrete. Izvestia of higher educational institutions. Construction. 2012. No. 7–8 (643–644), pp. 21–26. (In Russian).
11. Shulaev M.V., Bashirov R.R., Emelyanov V.M. Investigation of the adsorption properties of industrial waste – spent perlite. Izvestiya of higher educational institutions. Series: Chemistry and chemical technology. 2010. Vol. 53. No. 3, pp. 59–62. (In Russian).
12. Vardanyan M.A. Hydrophobization of expanded perlite with synthetic polymeric materials and study of its sorption properties. Voda i ekologiya: problemy i resheniya. 2017. No. 2 (70), pp. 50–59. (In Russian).
13. Kazym U. Adsorbing property of perlite. Znaniye. 2016. No. 3–5 (32), pp. 95–98. (In Russian).
14. Tikhonov Yu.M., Terekhin S.N., Aubakirova I.U., Shidlovskiy G.L., Guguchkina M.Yu. Povedeniye ognezashchitnykh materialov na osnove vermikulita, perlita i mineral’noy fibry v usloviyakh pozhara: Monografiya [Behavior of fire-retardant materials based on vermiculite, perlite and mineral fiber under fire conditions: Monograph]. Sankt-Peterburg. 2016. 148 p.
15. Terekhin S.N., Shidlovsky G.L., Tikhonov Yu.M. Fire-retardant composites based on vermiculite, perlite and fibrous fillers. Problems of risk management in the technosphere. 2015. No. 3 (35), pp. 41–44. (In Russian).
16. Fadeeva N.P., Pavlov M.V., Kharchenko I.A., Simunin M.M., Shabanova K.A., Pavlov V.F., Ryzhkov I.I. High-strength ceramic substrates based on perlite and silicate foams for filtration membranes. Membrany i membranenye tekhnologii. 2022. Vol. 12. No. 3, pp. 192–199. (In Russian).
17. Gurgenyan N.V., Pyuskylyan K., Khachanova I.B. Radiation characteristics of perlite Khimicheskaya tekhnologiya. 2015. Vol. 16. No. 6, pp. 352–357. (In Russian).
18. Kulikova E.S., Krivun E.A. Concrete on expanded perlite. Dal’niy Vostok: problemy razvitiya arkhitekturno-stroitel’nogo kompleksa. 2017. No. 1, pp. 291–293. (In Russian).
19. Volkova O.E., Volkova A.Yu. Building materials based on expanded perlite and magnesia binder. Trudi of the Bratsk State University. Series: Natural and engineering sciences. 2015. Vol. 1, pp. 201–203. (In Russian).
20. Nasedkin V.V. Perlite as a filler for lightweight concrete (historical chronicle and prospects for the future). Stroitel’nye Materialy [Construction Materials]. 2006. No. 6, pp. 70–74. (In Russian).
21. Natsievskii S.Yu., Alekseeva L.V. Production of dry building mixes using expanded perlite. Sukhiye stroitel’nyye smesi. 2012. No. 6, pp. 26–27. (In Russian).
22. Chernyak L.P., Dorogan N.A., Glushchenko D.K. The use of perlite as a component of the raw mix for the manufacture of cement clinker. Colloquium-Journal. 2018. No. 6–1 (17), pp. 57–62. (In Russian).
23. Khardaev P.K. Improving the efficiency of using crystallized perlites in concrete technology. Dis... Doctor of Sciences (Engineering). Ulan-Ude, 2000. 470 p. (In Russian).
24. Berezhnoy Yu.M., Romanova O.N., Bessarabov E.N., Sevostyanova A.A. Prospects for the use of foamed modified perlite to obtain new composite materials. Inzhenerny Vestnik Dona. 2018. No. 1 (48), p. 133.
25. Zhernovoi F.E., Miroshnikov E.V. Comprehensive assessment of the factors of increasing the strength of cement stone with the addition of ultrafine perlite. Vestnik of the Belgorod State Technological University named after V.G. Shukhov. 2009. No. 2, pp. 55–60. (In Russian).
26. Pavlenko N.V., Zhernovoi F.E., Miroshnikov E.V., Suvorova A.R. Perlite as an effective raw material for obtaining a nanostructured binder of non-hydration type of hardening. Resursoenergoeffektivnyye tekhnologii v stroitel’nom komplekse regiona. 2012. No. 2, pp. 240–243. (In Russian).
27. Lesovik V.S., Zhernovoi F.E., Glagolev E.S. The use of natural perlite in the composition of mixed cements. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 84–87. (In Russian).
28. Chizhov R.V., Kozhukhova N.I., Zhernovsky I.V., Korotkikh D.N., Fomina E.V., Kozhukhova M.I. Phase formation and properties of aluminosilicate binders of non-hydration hardening type using perlite. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 34–36. (In Russian).
29. Kozhukhova N.I., Chizhov R.V., Zhernovsky I.V., Loganina V.I., Strokova V.V. Peculiarities of structure formation of a geopolymer binder system based on perlite using various types of alkaline activator. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 61–64. (In Russian).
30. Kozhukhova N.I., Fomina E.V., Zhernovsky I.V. Peculiarities of structure formation and properties of aluminosilicate binders based on perlite. Resursoenergoeffektivnyye tekhnologii v stroitel’nom komplekse regiona. 2015. No. 5, pp. 100–104. (In Russian).
31. Samchenko S., Kozlova I., Zemskova O., Potaev D., Tsakhilova D. Efficiency of stabilization of slag suspensions by polycarboxylate. E3S Web of Conferences. 2019. Vol. 91. 02039. DOI: 10.1051/e3sconf/20199102039
32. Samchenko S., Kozlova I., Zemskova O., Nikiporova T., Kosarev S. Method of modifying Portland slag cement with ultrafine component. Advances in Intelligent Systems and Computing. 2019. 983, pp. 807–816. DOI: 10.1007/978-3-030-19868-8_79
33. Samchenko S., Kozlova I., Zemskova O., Zamelin D., Pepelyaeva A. Complex method of stabilizing slag suspension. Advances in Intelligent Systems and Computing. 2019. Vol. 983, pp. 817–827. DOI: 10.1007/978-3-030-19868-8_80

For citation: Kozlova I.V., Zemskova O.V., Lekanov N.A. Options for the introduction of a finely dispersed additive based on perlite into cement mixtures. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 42–49. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-42-49


Print   Email