Optimization of Concrete Technology Parameters to Ensure Thermal Crack Resistance of Massive Foundations

Number of journal: 10-2022
Autors:

Kaprielov S.S.,
Sheinfeld A.V.,
Chilin I.A.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-41-51
УДК: 691.32

 

AbstractAbout AuthorsReferences
Information on the optimal parameters of the technology of concreting massive foundation slabs, which ensures the thermal crack resistance of structures is provided. The parameters are optimized taking into account the specifics and experience of concrete work during the construction of a complex of high-rise buildings at the Moscow City sites. Sixteen foundation slabs with volumes from 4.4 to 45.8 thousand m3 of concrete of classes from B40 to B60 with rebar consumption from 128 to 336 kg/m3 were concreted in whole or in separate blocks with the use of highly flowability or self-compacting mixtures. The technology did not provide for the processes of pre-cooling of concrete mixtures in batching plants and forced temperature reduction on construction sites after concreting structures using water cooling systems. Instead, the emphasis is placed on the use of modified concrete mixtures with low exo-thermal potential – with a minimized cement content (i.e. “low-cement concretes”) and slowing down hydration, as well as ensuring natural heat exchange between the structure and the environment in the initial period (1,5–2 days after concreting) and regulating the cooling rate using thermal insulation materials afterwards. When concreting using highly flowability or self-compacting concrete mixtures with a cement content, in terms of clinker, no more than 350 kg/m3 and the temperature of the mixtures no higher than 20oC, the maximum temperature in the core of a massive structure does not exceed 65oC. With an increase in the proportion of clinker in cement for every 10 kg/m3 and the temperature of the mixtures by 1oC, the maximum temperature in the core of the structure increases by 0,8–1,2oC. Regardless of the value of the maximum temperature in the core, the cooling rate of structures with a surface modulus of less than 2 m-1 and and reinforcement consumption of at least 128 kg/m3 should not exceed 3oC/day.
S.S. KAPRIELOV1, Doctor of Sciences (Engineering)), Academic RAACS,
A.V. SHEINFELD1, Doctor of Sciences (Engineering) Adviser of RAACS,
I.A. CHILIN2, Engineer

1 Research Institute of Concrete and Reinforced Concrete (NIIZHB) named after A.A. Gvozdev (6, bldg. 5, 2-nd Institutskaya Street, Moscow,109428, Russian Federation)
2 “Master Concrete Enterprise” LTD (31, Saratovskaya Street, Moscow, 109518, Russian Federation)

1. Hirozo Mihashi, Joao Paulo de B. Leite. State-of-the-art report on controlling of cracking in early age concrete. Journal of Advanced Concrete Technology. 2004. June. Vol. 2, No. 2, pp. 141–154.
2. Nannan Shi, Jianshu Ouyang, Runxiao Zhang, Dahai Huang. Experimental study on early-age crack of mass concrete under the controlled temperature history. Advances in Materials Science and Engineering. 2014. Article ID 671795, 10 p. doi.org/10.1155/2014/671795
3. ACI 207.1R-05. Guide to Mass Concrete. Report of ACI Committee 207
4. Bisch Philippe. Behavior and assessment of massive structures: cracking and shrinkage. crack width calculation methods for large concrete structures. Nordic Miniseminar. Oslo, Norway. 29–30 august 2017. Workshop Proceedings. No. 12, pp. 11–15.
5. Мчедлов-Петросян О.П. Химия неорганических строительных материалов. M.: Стройиздат, 1988. 304 с.
5. Mchedlov-Petrossian O. P. Khimiya neorganicheskikh stroitel’nykh materialov [Chemistry of Inorganic Building Materials]. Moscow: Stroyizdat. 1988. 304 p.
6. Thermal Properties of Ettringite. Gypsum and Lime. 1968. Vol. 9, pp. 253–269.
7. Yukie Shimada, Francis Young. Thermal stability of ettringite in alkaline solutions at 80oC. Cement and Concrete Research. 2004. December. Vol. 34. Iss. 12, pp. 2261–2268.
8. ACI 207.4R-05. Cooling and Insulating Systems for Mass Concrete. Report of ACI Committee 207.
9. Aitcin P.-C. High-performance concrete. E&FN. London and New York. 1998. 598 p.
10. Каприелов С.С., Травуш В.И., Шейнфельд А.В., Карпенко Н.И., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные бетоны нового поколения в сооружениях ММДЦ «Москва-Сити» // Строительные материалы. 2006. № 10. С. 8–12.
10. Kaprielov S.S., Travush V.I., Sheynfeld A.V., Karpenko N.I., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. Modifiered Concretes of a New Generation in Buildings of «Moscow city». Stroitel’nye Materialy [Construction Materials]. 2006. No. 10, pp. 8–12. (In Russian).
11. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С. Новые модифицированные бетоны. М.: ООО «Типография «Парадиз», 2010. 258 с.
11. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S. Novye modifitsirovannye betony [A New Modifiered Concretes]. Moscow: Paradise. 2010. 258 p. (In Russian).
12. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Новые бетоны и технологии в конструкциях высотных зданий // Высотные здания. 2007. № 5. С. 94–101.
12. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. New concretes and technologies in structures of tall buildings. Vysotnye Zdaniya. 2007. No. 5, pp. 94–101. (In Russian).
13. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Обеспечение термической трещиностойкости массивных фундаментных плит из модифицированных бетонов нового поколения. Проблемы долговечности зданий и сооружений в современном строительстве: Мат. междунар. конф. СПб., 2007. С. 240–245.
13. Kaprielov S.S., Sheynfeld A.V., Kardumyan G.S., Kiselyova Yu.A., Prigozhenko O.V. Providing thermal crack resistance of massive foundation slabs. Problems of Durability of Buildings and Structures in Contmporary Construction. Saint-Petersburg. 2007, pp. 240–245. (In Russian).
14. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Высокопрочные бетоны в конструкции фундаментов высотного комплекса «ОКО» в ММДЦ «Москва-Сити» // Промышленное и гражданское строительство. 2017. № 3. С. 53–57.
14. Kaprielov S.S., Sheynfeld A.V., Al Omais D., Zaitsev A.S. High-strength concretes in foun-dation of tall buildings complex «ÓKO» in «Moscow City» Business Center. Promyshlennoye i Grazhdanskoye Stroitelstvo. 2017. No. 3, pp. 53–57. (In Russian).
15. Шифрин С.А., Кардумян Г.С. Использование органоминеральных модификаторов серии МБ для снижения температурных напряжений в бетонируемых массивных конструкциях // Строительные материалы. 2007. № 9. С. 9–11.
15. Shifrin S.A., Kardumian G.S. The use of organic-mineral modifiers of mb series for re-ducing the thermal stresses in massive concrete structures. Stroitel’nye Materialy [Construction Materials]. 2007. No. 9, pp. 9–11. (In Russian).
16. Каприелов С.С., Шейнфельд А.В. Некоторые особенности механизма действия органоминеральных модификаторов на цементные системы // Сейсмостойкое строительство. Безопасность сооружений. 2017. № 1. С. 40–47.
16. Kaprielov S.S., Sheynfeld A.V. Some features of organic-mineral modifiers action on cement sistems. Seismostoykoye Stroitelstvo. Bezopasnost sooruzheniy. 2017. No.1, pp. 40–47. (In Russian).
17. Bourchy A., Barnes L., Bessette L., Chalencon F., Joron A., Torrenti J-M. Optimization of concrete mix design to account for strength and hydration heat in massive concrete structures. Cement and Concrete Composites. 2019. No. 103, pp. 233–241.
18. Kaprielov S.S., Sheynfeld A.V. Influence of silica fume / fly ash / superplasticizer combinations in powder–like complex modifiers on cement paste porosity and concrete properties. Sixth CANMET/ACI International Conference on Superplasticizers and other Chemical Admixtures in Concrete: Proceedings – Nice. France. 2000, pp. 383–400.
19. Kaprielov S.S., Karpenko N.I., Sheynfeld A.V., Kouznetsov E.N. Influence of multicomponent modifier containing silica fume, fly ash, superplasticizer and air-entraining agent on structure and deformability of high-strength concrete. Seventh CANMET/ACI International Conference on Superplasticizers and other chemical admixtures in concrete. Berlin, Germany. 2003, pp. 99–107.
20. Kaprielov S.S., Karpenko N.I., Sheynfeld A.V. On Controlling Modulus of Elasticity and Creep in High-Strength Concrete with Multicomponent Modifier. Fifth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete: Supplementary Papers. Las Vegas. USA. 2004, pp. 405–421.
21. Odler I. Special Inorganic Cements. E&FN SPON. London – New York. 2000. 395 p.
22. Батраков В.Г. Модифицированные бетоны. Теория и практика. M.: «Astra seven» JSC, 1998. 768 с.
22. Batrakov V.G. Modifitsirovannye betony. Teoriya i praktika [Modified Concrete. Theory and Practice]. Moscow: Astra seven. 1998. 768 p. (In Russian).
23. Каприелов С.С., Шейнфельд А.В., Аль-Омаис Д., Зайцев А.С. Опыт производства и контроля качества высокопрочных бетонов на строительстве высотного комплекса «ОКО» в ММДЦ «Москва-Сити» // Промышленное и гражданское строительство. 2018. № 1. С. 18–24.
23. Kaprielov S.S., Sheynfeld A.V., Al Omais D., Zaitsev A.S. Experience in the Production and Quality Control of High-Strength Concrete in Construction of Tall Buildings Complex «ÓKO» in «Moscow City» Business Center. Promyshlennoye i Grazhdanskoye Stroitelstvo. 2018. No. 1, pp. 18–24.

For citation: Kaprielov S.S., Sheinfeld A.V., Chilin I.A. Optimization of concrete technology parameters to ensure thermal crack resistance of massive foundations. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 41–51. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-41-51


Print   Email