Decorative and Finishing Powder-Activated Concretes with a Granular Surface Texture

Number of journal: 10-2022
Autors:

Erofeev V.T.,
Maksimova I.N.,
Tarakanov O.V.,
Sanyagina Ya.A.,
Erofeeva I.V.,
Suzdaltsev O.V.

DOI: https://doi.org/10.31659/0585-430X-2022-807-10-25-40
УДК: 666.9.031

 

AbstractAbout AuthorsReferences
It is shown that in recent years, self-compacting concrete mixtures, characterized by high workability without the use of vibration, have been widely used in domestic and world practice. The results of a study on the selection of compositions of decorative and finishing powder-activated concretes with a granular surface texture according to rheological properties are presented. The structural and rheotechnological parameters of powder-activated concretes are calculated. It is shown that from the point of view of rheotechnological indicators, the compositions of self-compacting concretes with a cone draft of 27.4 and 28.5 cm are the most qualitative, which corresponds to the American standard SF2. There is an obvious regularity in achieving close values of conditional rheological matrices (ИВДПт, ИПзВДПт) equal to 1.67–1.97 and 1.78–1.98, respectively, indicating that the volume content of the water-dispersed fine-grained suspension component for self-compacting powder-activated sand concretes should be in the range of 60%. Only at a high content of water-dispersed-fine-grained suspension will absolute self-spreading be ensured. From the obtained values of the conditional rheological criteria of powder-activated concretes, it follows that all of them are much greater than one and characterize a significant excess of the volumes of rheological matrices over the volumes of fine-grained, coarse-grained components that fit into them with large separation of particles and grains. As a result of the studies on strength and frost resistance, high indicators of strength and frost resistance of decorative powder-activated concretes with a granular surface texture were revealed.
V.T. EROFEEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.N. MAKSIMOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.V. TARAKANOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Ya.A. SANYAGINA1, Engineer (postgraduate) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.V. EROFEEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. SUZDALTSEV3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research N.P. Ogarev Mordovia State University (68, Bolshevistskaya Street, Saransk, Republic of Mordovia, 30005, Russian Federation)
2 Penza State University of Architecture and Civil Engineering (28, Germana Titova Street, Penza, 440028, Russian Federation)
3 Asia Cement LLC (20Б/34, Bakunina/Plekhanova Street, Penza, 440000, Russian Federation)

1. Salimova T.A., Vatolkina N.Sh. Quality management in the transition to industry 4.0. Standarty i kachestvo. 2018. No. 6, pp. 58–62. (In Russian).
2. Lesovik V.S. Geonika (geomimetika). Primery realizatsii v stroitel’nom materialovedenii. [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: BSTU Publishing House. 2016. 287 p.
3. Karpenko N.I., Karpenko S.N., Yarmakovskiy V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. Academia. Arkhitektura i stroitel’stvo. 2015. No. 1, pp. 93–102 (In Russian).
4. Lesovik V.S., Fomina E.V. A new paradigm for the design of building composites to protect the human environment. Vestnik MGSU. 2019. Vol. 14. No. 10, pp. 1241–1257. (In Russian). DOI: 10.22227/1997-0935.2019.10.1241-1257
5. Salimova T.A., Vatolkina N.Sh., Makolov V.I. QMS development vectors in the transition to industry 4.0. Standarty i kachestvo. 2018. No. 8 (974), pp. 44–48. (In Russian).
6. Slepyan E.I. Ecological risk. Regional’naya ekologiya. 2002. No. 1–2, pp. 62–82 (In Russian).
7. Erofeev V.T., Yamashkin A.A., Smirnov V.F., Svetlov D.A., Vildyaeva M.V., Yamashkin S.A. Biodestructive processes in ecological, social and industrial systems of residential development. Privolzhskiy nauchnyy zhurnal. 2018. No. 3 (47), pp. 70–77 (In Russian).
8. Kaznacheev V.N. Ekologiya cheloveka. Osnovnyye problem [Human ecology. Main problems]. Moscow: Nauka. 1988. 32 p.
9. Balmasov G.F., Meshkov P.I. Influence of chemicals on phase transformations during hardening of cement stone. Stroitel’nye Materialy [Construction Materials]. 2007. No. 3, pp. 56–57. (In Russian).
10. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Suspension-filled concrete mixtures for powder-activated concrete of a new generation. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2016. No. 4, pp. 38–37. (In Russian).
11. Usherov-Marshak A.V. Betonovedeniye: sovremennyye etyudy [Concrete science: modern studies]. Kharkov: Rarities of Ukraine. 2016. 135 p.
12. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Prochnost’ i parametry razrusheniya tsementnykh kompozitov [Strength and fracture parameters of cement composites]. Saransk: Publishing House of Mordovia University. 2015. 360 p.
13. Taylor H.F.W. Khimiya tsementa [Chemistry of cement]. Moscow: Mir. 1996. 560 p.
14. Erofeev V.T., Mitina E.A., Osipov A.A., Matviev-sky A.K., Emelyanov D.V., Yudin P.V. Composite building materials based on activated mixing water. Stroitel’nye Materialy [Construction Materials]. 2007. No. 11, pp. 56–58 (In Russian).
15. Usherov-Marshak A.V. Kalorimetriyatsementa i betona: Izbr. tr. [Calorimetry of cement and concrete: Select. tr.]. Kharkov: Fact, 2002. 183 p.
16. Evdokimov Yu.A., Kolesnikov V.I., Teterin A.I. Planirovaniye i analiz eksperimentov pri reshenii zadach treniya i iznosa [Planning and analysis of experiments in solving problems of friction and wear]. Moscow: Nauka. 1980. 228 p.
17. Kalashnikov V.I., Gulyaeva E.V., Valiev D.M. Influence of the type of super- and hyperplasticizers on the rheotechnological properties of cement-mineral suspensions, powdered concrete mixtures and strength properties of concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2011. No. 12, pp. 40–45. (In Russian).
18. Kaprielov S.S., Sheinfeld A.V., Krivoborodov Yu.R. Influence of the structure of cement stone with the addition of microsilica and superplasticizer on the properties of concrete. Beton i zhelezobeton. 1992. No. 7, pp. 4–7. (In Russian).
19. Kaprielov S.S., Sheinfeld A.V., Batrakov V.G. Complex concrete modifier brand MB-01. Beton i zhelezobeton. 1997. No. 5, pp. 38–41. (In Russian).
20. Kaprielov S.S., Chilin I.A. Ultra-high-strength self-compacting fiber-reinforced concrete for monolithic structures. Concrete and reinforced concrete – a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete: in 7 volumes. 2014. Vol. 3. Moscow: MGSU, pp. 158–164 (In Russian).
21. Kaprielov S.S., Sheinfeld A.V., Kardumyan G.S. New modified concrete in the construction of high-rise buildings. II International Forum of Architecture, Construction, Urban Reconstruction, Construction Technologies and Materials. Moscow. November 11–13, 2008, pp. 29–38 (In Russian).
22. Piares I., Barbara H., Barragan B., Ramos G. Self-compacting concrete with finely ground calcium carbonate. Mezhdunarodnoe betonnoe proizvodstvo. 2012. No. 1, pp. 34–38. (In Russian).
23. Gulyaeva E.V., Aksenov S.V., Erofeeva I.V., Kalashnikov V.I. Self-compacting concretes with low specific consumption of cement per unit of concrete strength. Science and innovation. Building and architecture: materials of the XII International scientific-practical conference: in 23 volumes. Sofia. 2014. Vol. 10, pp. 38–40. (In Russian).
24. Yakunin Yu.I. Production of self-compacting concrete with the help of SKAKOA/S equipment. Tekhnologii betonov. 2008. No. 4, pp. 38–39. (In Russian).
25. Antonenko M.V., Ogurtsova Y.N., Strokova V.V., Gubareva E.N. et al. The effect of titanium dioxide sol stabilizer on the properties ofphotocatalytic composite material. BUILDINTECH BIT. 2020. LNCE95, pp. 16–22. DOI: 10.1007/978-3-030-54652-6_3
26. Askadskii A.A., Zhdanova T.V., Andreev I.F. [et al.] Connection of water permeability with a number of physical properties of polymers. E3S Web of Conferences. 2021. Vol. 263. 01022. https://doi.org/10.1051/e3sconf/202126301022
27. Shuldyakov K.V., Kramar L.Ya., Trofimov B.Ya., Ivanov I.M. Superplasticizer effect on cement paste structure and concrete freeze-thaw resistance. Advanced Materials in Technology and Construction (AMTC-2015): AIP Conference Proceedings. 2016. 1698. 070011–1–070011–6. https://doi.org/10.1063/1.4937881
28. Erofeev V.T., Fedortsov A.P., Bogatov A.D., Fedortsov V.A. Biocorrosion of cement concretes, features of its development, evaluation and forecasting. Fundamental’nyye issledovaniya. 2014. No. 12–4, pp. 708–716. (In Russian).
29. Erofeev V.T. et al. Zashchita zdaniy i sooruzheniy ot biopovrezhdeniy biotsidnymi preparatami na osnove guanidina [Protection of buildings and structures from biodamage by biocidal preparations based on guanidine / Ed. by Komohov P.G., Erofeev V.T., Afinogentov G.E.]. St. Petersburg: Nauka. 2010. 192 p.
30. Mukhametrakhimov R., Lukmanova L. Influence of the technological properties of cement-sand mortar on the quality of 3D printed products. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 890. 012082. DOI: 10.1088/1757-899X/890/1/012082
31. Erofeev V.T., Elchishcheva T.F., Makarchuk M.V. Epoxy composite with carbon structures in additive manufacturing technology for the textile industry. Tekhnologiya tekstilnoi promyshlennosti. 2022. No. 2 (398), pp. 346–354. (In Russian). DOI: 10.47367/0021-3497_2022_2_346
32. Erofeev V.T., Elchishcheva T.F., Preobrazhenskaya E.M., Makarchuk M.V. Prospects for the use of new materials and approaches of additive technologies in industrial design. Regional’naya arkhitektura i stroitel’stvo. 2019. No. 3 (40), pp. 7–15. (In Russian).
33. Kharkhardin A.N., Strokova V.V., Kozhukhova M.I. Critical size of micro- and nanoparticles, at which their unusual properties are manifested. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2012. No. 10, pp. 109–115. (In Russian).
34. Chernyshov E.M., Korotkikh D.N. Modification of the structure of cement stone by micro- and nano-sized particles of silica (questions of theory and applications). Stroitel’nyye materialy, oborudovaniye i tekhnologii XXI veka. 2008. No. 5, pp. 30–32. (In Russian).
35. Sheikin A.E., Chekhovskoy Yu.V., Brusser M.I. Struktura i svoystva tsementnykh betonov [Structure and properties of cement concretes]. Moscow: Stroyizdat. 1983. 254 p.
36. Afonin V.V., Erofeeva I.V., Fedortsov V.A., Emelyanov D.V., Podzhivotov N.Yu. Heuristic approach to solving two-criteria optimization problems for composite materials. Vestnik MGSU. 2018. Vol. 13. Iss. 11, pp. 1357–1366. (In Russian). DOI: 10.22227/1997-0935.2018.11.1357-1366
37. Erofeev V.T., Merkulov I.I., Merkulov A.I., Erofeev P.S. Optimizatsiya sostavov betonov s primeneniyem chislennogo modelirovaniya [Optimization of concrete compositions using numerical simulation]. Saransk: Publishing House of Mordovia University. 2006. 100 p.
38. Kalashnikov V.I. Calculation of the compositions of high-strength self-compacting concrete. Stroitel’nye Materialy [Construction Materials]. 2008. No. 10, pp. 4–6. (In Russian).
39. Erofeev V.T., Tyuryakhin A.S., Smirnov I.V., Maksimova I.N. The optimal composition of the composite according to the criterion of its strength. Stroitel’naya mekhanika i raschet sooruzheniy. 2016. No. 3 (266), pp. 6–16. (In Russian).
40. Kalashnikov V.I., Erofeev V.T., Tarakanov O.V. Technical and economic efficiency of the introduction of architectural and decorative powder-activated carbonate sand concretes. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2016. No. 6 (690), pp. 39–46. (In Russian).
41. Vovk A.I. Superplasticizers in concrete: analysis of process chemistry. Tekhnologii betonov. 2007. No. 2, pp. 8–9; No. 3, pp. 12–14; No. 4, pp. 8–9. (In Russian).
42. Kalashnikov V.I., Moroz M.N., Tarakanov O.V. et al. New ideas about the mechanism of action of superplasticizers, jointly milled with cement or mineral rocks. Stroitel’nye Materialy [Construction Materials]. 2014. No. 9, pp. 70–75. (In Russian).
43. Batrakov V.G. Modifitsirovannyye betony. Teoriya i praktika [Modified concrete. Theory and practice]. Moscow: Technoproekt. 1998. 768 p.
44. Erofeev V.T., Fomichev V.T., Emelyanov D.V., Balatkhanova E.M., Rodin A.I., et al. Investigation of the properties of cement composites for activated mixing water. Fundamental’nyye issledovaniya. 2015. No. 2 (part 6), pp. 1175–1181. (In Russian).
45. Kalashnikov V.I., Belyakova E.A., Moskvin R.N. Selecting the type of control setting composite cement-ash binder. Procedia Engineering. 2016. Vol. 150, pp. 1631–1635. DOI: 10.1016/j.proeng.2016.07.143
46. Kalashnikov V.I. How to turn old-generation concretes into new-generation high-performance concretes. Beton i zhelezobeton. 2012. No. 1, pp. 82 (In Russian).
47. Kalashnikov V.I. What is a new generation of powder-activated concrete. Stroitel’nye Materialy [Construction Materials]. 2012. No. 10, pp. 70–71 (In Russian).
48. Erofeev V.T., Makridin N.I., Maksimova I.N. On the structural properties of the matrix phase of high-strength cement composites. Promyshlennoye i grazhdanskoyes troitel’stvo. 2019. No. 3, pp. 4–10. (In Russian). DOI: 10.33622/0869-7019.2019.03.04-10
49. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Struktura i konstruktsionnaya prochnost’ tsementnykh kompozitov [Structure and structural strength of cement composites]. Moscow: ASV. 2017. 400 p.
50. Korotkikh D.N. Treshchinostoykost’ sovremennykh tsementnykh betonov (problem materialovedeniya i tekhnologii): monografiya [Crack resistance of modern cement concretes (problems of materials science and technology): monograph]. Voronezh: Voronezh GASU. 2014. 141 p.
51. Karpenko N.I., Yarmakovskiy V.N. Structural concretes of new modifications for lightweight frames of energy-efficient buildings. Rossiyskiy stroitel’nyi kompleks. 2011. No. 10, pp. 122–128. (In Russian).
52. Deize T., Horkung O., Meloman M. Transition from Mikrodur technology to Nanodur technology. The use of standard cements in the practice of producing concrete with ultra-high performance properties. Betonnyy zavod. 2004. No. 3, pp. 4–11. (In Russian).
53. Marenkov V.A., Tarasov O.G. Influence of the climatic factor on the loss of pretensioning in the reinforcement of prestressed elements. Stroitel’nye Materialy [Construction Materials]. 2006. No. 12, pp. 55–57. (In Russian).
54. Dobshits L.M. Physico-mathematical model of concrete destruction during variable freezing and thawing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 30–36 (In Russian).
55. Matveeva O.I., Vasiliev I.G., Pavlyukova I.R. Cement concretes with composite fiber reinforcement for highways operated in the climatic conditions of Yakutia. Concrete and reinforced concrete - a look into the future: scientific works of the III All-Russian (II International) conference on concrete and reinforced concrete: in 7 volumes. Moscow: MGSU, 2014. Vol. 3, pp. 173–182. (In Russian).
56. Sall M., Rybintseva E.S., Tkachenko G.A. Fine-grained concretes with organo-mineral additive for road construction. Stroitel’nye Materialy [Construction Materials]. 2009. No. 7, pp.18–20. (In Russian).
57. Kalashnikov V.I., Erofeev V.T., Moroz M.N. et al. Nanohydrosilicate technologies in the production of concrete. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 88–91. (In Russian).
58. Kalashnikov V.I., Suzdaltsev O.V., Dryanin R.A., Sekhposyan G.P. The role of dispersed and fine-grained fillers in concretes of a new generation. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2014. No. 7, pp. 11–21. (In Russian).
59. Bazhenov Yu.M., Lukutsova N.P., Karpikov E.G. Fine-grained concrete modified with a complex microdispersed additive. Vestnik MGSU. 2013. No. 2, pp. 94–100. (In Russian).
60. Berdov G.I., Mashkin A.N. Activation of cement slurry to obtain high-quality concrete. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo. 2007. No. 7, pp. 28–31. (In Russian).
61. Kaushansky V.E., Samoshchenko L.S., Bazhenova O.Yu. et al. Obtaining cement with active mineral additives based on aluminosilicate rocks. Tsement i yego primeneniye. 2000. No. 3, pp. 28–30. (In Russian).
62. Resner O. New opportunities in the design of architectural facades. Mezhdunarodnoye betonnoye proizvodstvo. 2013. No. 6, pp. 152–155. (In Russian).
63. Concrete flowers. Mezhdunarodnoye betonnoye proizvodstvo. 2013. No. 5, pp. 24–26 (In Russian).
64. Visualization of photos and graphics on a concrete surface. Mezhdunarodnoye betonnoye proizvodstvo. 2014. No. 3, p. 173. (In Russian).
65. Concrete surfaces with photocatalytic activation. Mezhdunarodnoye betonnoye proizvodstvo. 2013. No. 6, p. 18. (In Russian).
66. Fomichev V.T., Erofeev V.T., Emelyanov D.V., Matvievsky A.A., Mitina E.A. The role of products of anodic processes in the course of electromagnetic activation of water. Fundamental’nyye issledovaniya. 2015. No. 2 (part 6), pp. 1194–1197. (In Russian).
67. Kalashnikov V.I. Calculation of compositions of high-strength self-compacting concrete. Stroitel’nye Materialy [Construction Materials]. 2008. No. 10, pp. 4–6. (In Russian).
68. Gusev B.V. Nanostructuring of concrete materials. Promyshlennoye i grazhdanskoye stroitel’stvo. 2016. No. 1, pp. 7–9. (In Russian).
69. Uriev N.B. Vysokokontsentrirovannyye dispersnyye sistemy [Highly concentrated disperse systems]. Moscow: Chemistry. 1980. 320 p.
70. Mchedlov-Petrosyan O.P., Olginsky A.G. Osobennosti mineraloobrazovaniya kristallogidratov v prisutstvii monomineral’nykh tonkodispersnykh napolniteley. V kn.: Eksperimental’noye issledovaniye mineraloobrazovaniya [Peculiarities of mineral formation of crystalline hydrates in the presence of monomineral finely dispersed fillers. In book: Experimental study of mineral formation]. Moscow: Nauka. 1971, pp. 262–268.
71. Erofeev V.T., Rodin A.I., Dergunova A.V., Suraeva E.N., Smirnov V.F., Bogatov A.D., Kaznacheev S.V., Karpushin S.N. Biological and climatic resistance of cement composites. Academia. Arkhitektura i stroitel’stvo. 2016. No. 3. pp. 93–102. (In Russian).
72. Startsev O.V., Molokov M.V., Medvedev I.M., Erofeev V.T. Determination of the influence of the atmosphere on building elements by temperature sensors. Vse materialy. Entsiklopedicheskiy spravochnik. 2017. No. 3, pp. 61–68. (In Russian).
73. Erofeev V.T., Elchishcheva T.F., Rodin A.I., Smirnov I.V., Merkulov D.A., Fedortsov V.A., Chuvatkin A.A. Study of the properties of concrete, reinforced concrete structures of structures operated in the coastal zone of the Black Sea coast. Transportnyye sooruzheniya. 2018. Vol. 5. No. 2, p. 5. (In Russian). DOI: 10.15862/05SATS218
74. Powers T.K. Fizicheskaya struktura portlandtsementnogo testa. V kn.: Khimiya tsementov [The physical structure of Portland cement paste. In book: Chemistry of cements]. Moscow: Stroyizdat. 1969, pp. 300–319.
75. Kalashnikov V.I. Capillary shrinkage of high-strength reaction-powder concretes and the influence of the scale factor. Stroitel’nye Materialy [Construction Materials]. 2010. No. 5, pp. 52–53. (In Russian).
76. Falikman V.R., Sorokin Yu.V., Kalashnikov O.O. Construction and technical properties of especially high-strength fast-hardening concretes. Beton i zhelezobeton. 2004. No. 5, pp. 5–10 (In Russian).
77. Sheikin A.E., Dobshits L.M. Tsementnyye betony vysokoy morozostoykosti [Cement concretes of high frost resistance]. Leningrad: Stroyizdat. 1989. 128 p.
78. Dobshits L.M. Durability of concrete of transport structures. Transportnoye stroitel’stvo. 1995. No. 3, pp. 17–20. (In Russian).
79. Dobshits L.M., Solomatov V.I. Influence of the properties of cement on the frost resistance of concrete. Beton i zhelezobeton. 1999. No. 3, pp. 19–21. (In Russian).
80. Kalashnikov V.I., Suzdaltsev O.V., Moroz M.N., Pausk V.V. Frost resistance of painted architectural-decorative powder-activated sand concretes. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 16–19. (In Russian).
81. Velichko E.G. Frost resistance of concrete with an optimized dispersed composition/ Stroitel’nye Materialy [Construction Materials]. 2012. No. 2, pp. 81–83. (In Russian).

For citation: Erofeev V.T., Maksimova I.N., Tarakanov O.V., Sanyagina Ya.A., Erofeeva I.V., Suzdaltsev O.V. Decorative and finishing powder-activated concretes with a granular surface texture. Stroitel’nye Materialy [Construction Materials]. 2022. No. 10, pp. 25–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-807-10-25-40


Print   Email