Fire Hazard of Composite Materials

Number of journal: 9-2021
Autors:

Gravit M.V.,
Lazarev Y.G.,
Vasyutkin E.S.,
Malcheva A.V.,
Semenov M.A.

DOI: https://doi.org/10.31659/0585-430X-2021-795-9-54-63
УДК: 614.841.34

 

AbstractAbout AuthorsReferences
The most promising field of application of composite materials is construction, namely, their use as load-bearing and enclosing structures, thereby replacing traditional steel and reinforced concrete, as well as wood, the main disadvantage of which is an increased fire hazard. Modern production of polymer composite materials (PCM) makes it possible to produce elements of various sizes, sections and structures. In the presented work, the relevance of the use of composite materials with a polymer matrix (composites) in construction is justified. The advantages and disadvantages of polymeric materials in comparison with traditional materials are considered, as well as publications reflecting the features of creating structures from polymeric composite materials from the point of view of ensuring the required level of their fire safety are analyzed. On the example of a composite bendable fire protection means containing a polymer matrix on fiberglass, experimental data on fire-technical characteristics were obtained. It is established that most of composites have the following indicators of fire-technical characteristics according to the Russian classification: weak and moderately flammable, hardly and moderately flammable: smoke generation coefficient, toxicity-low and moderate hazardous.
M.V. GRAVIT1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Y.G. LAZAREV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.S. VASYUTKIN2, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.V. MALCHEVA1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. SEMENOV1, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Peter the Great St. Petersburg Polytechnic University (29, Polytechnicheskaya Street, St. Petersburg, 195251, Russian Federation)
2 Composite Technologies and Equipment LLC (513, room, 2A, Keramicheskaya Street, Balashikha, 143983, Moscow Region, Russian Federation)

1. Flerov A.V. Materialovedeniye i tekhnologiya khudozhestvennoy obrabotki metallov [Material Science and technology of artistic metal processing]. Moscow: Vysshaya shkola. 1981. 288 p.
2. Ivliev A.A., Kalgin A.A., Skok O.M. Otdelochnyye stroitel’nyye materialy [Finishing building materials]. Moscow: Academia. 2008. 487 p.
3. Omarov Zh.M., Zholdybaev Sh.S., Zhandalinova K.A. The use of composite materials in the construction industry. Nauka i tekhnika Kazakhstana. 2019. No. 4, pp. 7–16. (In Russian).
4. Sovremennyye stroitel’nyye materialy i tovary: Spravochnik. [Modern building materials and goods. Reference book]. Moscow: Eksmo. 2006. 576 p.
5. Lysenko E.I., Kotlyarova L.V., Tkachenko G.A., Trishchenko I.V., Yundin A.N. Sovremennyye otdelochnyye materialy / pod obshch. red. prof. A.N. Yudina [Modern finishing materials / under total. ed. prof. A.N. Yudin]. Rostov-on-Don: Phoenix, 2003. 448 p.
6. Stroitel’noye materialovedeniye / Pod obshch. red. V.A. Nevskogo [Building materials science / Under total. ed. V.A. Nevsky]. Rostov-on-Don: Phoenix. 2007. 571 p.
7. Bayer V.E. Materialovedeniye dlya arkhitektorov: Uchebnoye posobiye [Material science for architects: A textbook]. Moscow: Astrel, AST, Tranzitkniga. 2005. 254 p.
8. Leikin A.E., Rodin B.I. Materials Science. Moscow: Vysshaya shkola. 1971. 416 p.
9. Ayrapetov D.P. Arkhitekturnoye materialovedeniye [Architectural materials science]. Moscow: Stroyizdat. 1986. 310 p.
10. Gravit M.V., Serdyuk D.O., Bardin A.V., Prussakov V.A., Buka-Vaivade K. Methods for determining the fire resistance of wooden frame structures. Magazine of Civil Engineering. 2019. No. 1 (85), pp. 92–106. DOI: 10.18720/MCE.85.8.
11. Garashchenko A.N., Berlin A.A., Kulkov A.A. Methods and means of ensuring the required fire safety indicators of structures made of polymer composites (overview). Pozharovzryvobezopasnost’. 2019. Vol. 28. No. 2, pp. 9–30. (In Russian). https://doi.org/10.18322/PVB.2019.28.02.9-30
12. Salatov E.K., Chursina A.M. Prospects for the use of carbon fiber composite materials in industrial and civil construction. Vestnik MITU-MASI. 2018. No. 4, pp. 29–35. (In Russian).
13. Strakhov V.L., Garashchenko A.N., Rudzinsky V.P. Program complexes for calculations of heat and mass transfer in building structures with fire protection taking into account thermal decomposition, swelling – shrinkage and evaporation–condensation. Pozharovzryvobezopasnost’. 2001. Vol. 10. No. 4, pp. 9–11. (In Russian).
14. Garashchenko N.A., Garashchenko A.N., Rudzinsky V.P. Thermal calculations of fire resistance of wood-glued structures with fire protection. Montazhnyye i spetsial’nyye raboty v stroitel’stve. 2006. No. 10, pp. 14–18. (In Russian).
15. Garashchenko A.N., Strakhov V.L., Rudzinsky V.P. Methodology for calculating the thickness of fire-resistant coatings based on mineral binders for building structures made of metal (on the example of the Soterm-1M coating). Pozharovzryvobezopasnost’. 2005. Vol. 14. No. 4, pp. 17–22. (In Russian).
16. Garashchenko A.N., Strakhov V.L., Rudzinsky V.P. Experimental and theoretical studies of the features of heat and mass transfer of intumescent fire protection on the example of the coating “Proterm Steel”. Proceedings of the third Russian national conference on heat transfer. 2002. Vol. 6, pp. 254–257.
17. Nazarenko V.A., Garashchenko A.N. Results of research and prospects for the use of the SGK-2 vspuchivayushchego coating for fire protection of structures and equipment for various purposes. Pozharovzryvobezopasnost’. 2005. Vol. 14. No. 6, pp. 17–22.
18. Dyachkova A.A., Kuznetsov V.D. Calculation of reinforcement of reinforced concrete slabs with carbon composite materials. Magazine of Civil Engineering. 2009. No. 3, pp. 25–28.
19. Cruz J.S., Barros J. Modeling of bond between near-surface mounted CFRP laminate strips and concrete. Computer and Structures. 2006. No. 82, pp. 1513–1521. https://doi.org/10.1016/j.compstruc.2004.03.047
20. FIB. Bulletin 14. Externally bonded FRP reinforcement for RC structures. Sprint-Digital-Druck Stuttgart, 2001.
21. Garashchenko A.N., Sukhanov A.V., Garashchenko N.A., Smirnov N.V., Konstantinova N.I., Merkulov A.A. Reducing the fire hazard of polymer composite materials when using intumescent fire retardant coatings. Pozharnaya bezopasnost’. 2012. No. 4, pp. 61–67.
22. Garashchenko A.N., Strakhov V.L., Razin A.F., Kanina E.P., Rudzinsky V.P. Development of heat and fire protection of the propeller shaft bearing structure made of composite materials. Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1992. Iss. 1 (109), pp. 12–15. (In Russian).
23. Strakhov V.L., Garashchenko A.N., Rudzinsky V.P. Calculation of non-stationary heating of multilayer fireproof structures. Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 1994. Iss. 1 (109)–2 (110), pp. 30–36. (In Russian).
24. Zverev V.G., Nazarenko V.A., Tsimbalyuk A.F. Heart and fire protection of multilayer structures based on the use of foaming coatings. Issledovaniya teploperedachi. 2005. Vol. 36. Iss. 7, pp. 543–556. (In Russian).
25. Teploukhov A.V. Investigation of the behavior of multilayer structures under the influence of external heat flows. Trudy MIT. 2008. Vol. 9. Part 1, pp. 231–238. (In Russian).
26. Zverev V.G., Nazarenko V.A., Tsimbalyuk A.F. Thermal protection of multilayer containers from the effects of fires. Teplofizika vysokikh temperatur. 2008. Vol. 46. No. 2, pp. 283–289. DOI: 10.1134/s10740-008-2015-9 (In Russian).
27. Garashchenko A.N., Vasin V.P., Natrusov V.I. Increasing the fire safety of ammunition containers made of polymer composite materials using fire protection Voprosy oboronnoy tekhniki. Ser. 15: Kompozitsionnyye nemetallicheskiye materialy v mashinostroyenii. 2012. Iss. 1 (164)–2 (165), pp. 44–50. (In Russian).
28. Plotnikov V.I., Kulkov A.A., Slitkov M.N., Plotnikov R.V., Garashchenko A.N. Development of structures and investigation of the thermal state of closures made of polymer composite materials under fire conditions. Fundamental foundations of ballistic design: collection of works of the 5th All-Russian scientific and technical conference. St. Petersburg. 2016, pp. 193–196. (In Russian).
29. Korolchenko A. Ya., Garashchenko A. N., Garashchenko P. A., Rudzinsky V. 77. Calculations of fire protection thicknesses that provide the required fire hazard indicators of wood-glued structures. Pozharovzryvobezopasnost’. 2008. Vol. 17. No. 3, pp. 49–56. (In Russian).
30. Almenbaev M.M., Artsybasheva O.V., Aseeva R.M., Makishev Zh.K., Moskalev V.A., Serkov B.B., Sivenkov A.B. Investigation of the rate of charring of wooden structures with a long service life. Izvestiya YuFU. Tekhnicheskiye nauki. 2014. No. 9 (158), pp. 246–254. (In Russian).
31. Almenbaev M.M. Efficiency of various methods of increasing the fire protection of wood with paint and varnish materials. Tekhnologii tekhnosfernoy bezopasnosti. 2015. No. 2 (60), pp. 56–60. (In Russian).
32. Anokhin E.A., Polishchuk E.Yu., Sivenkov A.B. The use of flame-retardant impregnating compositions to reduce the fire hazard of wooden structures with different service life. Pozharovzryvobezopasnost’. 2017. Vol. 26. No. 2, pp. 22–35. (In Russian).
33. Anokhin E. A., Polishchuk E. Yu., Sivenkov A. B. Application of fire-resistant impregnating compositions for increasing the fire hazard class of wooden structures for a long service life. Roitman readings: materials of the 5th International Scientific and Practical conference. Moscow. 2017, pp. 10–14. (In Russian).
34. Patent RU 2711076 C1 Fire-resistant intumescent roll coating. Gravit M.V., Prusakov V.A. Published 15.01.2020. (In Russian).
35. Gravit M.V., Prussakov V.A., Korotin I.G., Timofeev N.V., Simonenko Ya.B. And tumescent structural flexible fire protection for building structures and cable lines. Pozharovzryvobezopasnost’. 2020. Vol. 29 (3), pp. 18–32. (In Russian).
36. Semenov V.V., Butorov I.A. Problems of using polymer composite materials in industrial and civil construction. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2016. No. 4, pp. 129–137. (In Russian).
37. Gravit M.V., Nedryshkin O.V., Vaititsky A.A., Shpakova A.M., Nigmatullina D.G. Fire-technical characteristics of building materials in European and Russian regulatory documents. Problems of harmonization of research methods and classification. Pozharovzryvobezopasnost’. 2016. Vol. 25 (10), pp. 16–29. (In Russian).

For citation: Gravit M.V., Lazarev Y.G., Vasyutkin E.S., Malcheva A.V., Semenov M.A. Fire hazard of composite materials. Stroitel’nye Materialy [Construction Materials]. 2021. No. 9, pp. 54–63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-795-9-54-63


Print   Email