Composite Materials Based on Fluoranhydrite and Industrial Sulfur

Number of journal: 8-2021
Autors:

Gumeniuk A.N.,
Polyanskikh I.S.,
Khodyreva M.A.,
Shevchenko F.E.,
Pudov I.A.,
Pervushin G.N.,
Yakovlev G.I.

DOI: https://doi.org/10.31659/0585-430X-2021-794-8-4-10
УДК: 691.311

 

AbstractAbout AuthorsReferences
This article shows the results of fluoranhydrite and industrial sulfur composite research. 15% of industrial sulfur and 2% of sodium sulfate are the key components for a composite material with high performance properties. 2% of sodium sulphate is required to form the required structure of the composite. The heat treatment (60 min, 180оС) is the next stage and there an engineered stone is finally formed due to a sulfur polymerization. Physical-mechanical properties of modified composite, including compressive strength, are significantly increased (2 times) in comparison with the reference specimen (fluoranhidrite activated by 2% of sodium sulphate). The increase of water resistance properties up to 22,2% has also been established.
A.N. GUMENYUK, assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. POLYANSKIKH, PhD, Assoc. Prof. (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. KHODYREVA, student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
F.E. SHEVCHENKO, graduate student, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.А. PUDOV, PhD, Assoc. Prof. (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.N. PERVUSHIN, Dr. Sc. Engineering, Prof, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.I. YAKOVLEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kalashnikov Izhevsk State Technical University (ISTU) (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)

1. Erkinbaeva N., Ysmanov E., Tashpolotov Y. The use of technogenous waste from the kadamjai antimony plant as a raw material for the production of portland cement. Bulletin of Science and Practice. 2021. No. 7 (3), pp. 206–211. https://doi.org/10.33619/2414-2948/64/21
2. Орешкин Д.В., Шадрунова И.В., Чекушина Т.В., Прошляков А.Н. Утилизация отходов мрамора и бурового шлама в процессе производства строительных материалов // Строительные материалы. 2019. № 4. С. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-65-72
2. Oreshkin D.V., Shadrunova I.V., Chekushina T.V., Proshlyakov A.N. Disposal of waste marble and drill cuttings in the production of building materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 4, pp. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-769-4-65-72 (In Russian).
3. Guryanov A., Korenkova S., Bezgina L. Technogenic resources for nanotechnologies in construction. MATEC Web of Conferences. 2017. No. 117. 00061 https://doi.org/10.1051/matecconf/20171170006
4. Kansal C.M., Goyal R. Effect of nano silica, silica fume and steel slag on concrete properties. Materials Today: Proceedings. 2020. Vol. 45. Part 6, pp. 4535–4540. https://doi.org/10.1016/j.matpr.2020.12.1162
5. Будников П.П., Зорин С.П. Ангидритовый цемент. M.: Государственное издательство литературы по строительным материалам, 1954. 93 c.
5. Budnikov P.P., Zorin S.P. Angidritovyy tsement [Anhydrite cement]. Moscow: State publishing house of literature on building materials. 1954. 93 p.
6. Биспен Т.А., Масленников И.Г., Молдавский Д.Д. Получение фтористого водорода и плавиковой кислоты высокой чистоты // Известия Санкт-Петербургского государственного технологического института. 2016. № 33 (59). 13–18.
6. Bispen T.A., Maslennikov I.G., Moldavsky D.D. Production of hydrogen fluoride and high-purity hydrofluoric acid. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta. 2016. No. 33 (59), pp. 13–18. (In Russian).
7. Федорчук Ю.М., Цыганкова Т.С. Разработка способов снижения воздействия фтороводородных производств на окружающую среду: Монография. Томск: Издательство Томского политехнического университета, 2010. 149 с.
7. Fedorchuk Yu.M., Tsygankova T.S. Razrabotka sposobov snizheniya vozdeystviya ftorovodorodnykh proizvodstv na okruzhayushchuyu sredu: monografiya [Development of ways to reduce the impact of hydrogen fluoride production on the environment: monograph]. Tomsk: Publishing house of the Tomsk Polytechnic University. 2010. 149 p.
8. Аниканова А.Л., Волкова О.В., Кудяков А.И., Курмангалиева А.И. Активированное композиционное фторангидритовое вяжущее // Строительные материалы. 2019. № 1–2. С. 36–42. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42
8. Anikanova L.A., Volkova О.V., Kudyakov A.I., Kur-mangalieva A.I. Mechanically activated composite fluoroanhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 36–42. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-36-42 (In Russian).
9. Zhakupova G., Sadenova M.A., Varbanov P.S. Possible alternatives for cost-effective neutralisation of fluoroanhydrite minimising environmental impact. Chemical Engineering Transactions. 2019. Vol. 76, pp. 1069–1074. https://doi.org/10.3303/CET19761791069-1074
10. Ponomarenko A. Obtaining of granulated gypsum anhydrite on the basis of technogenic wastes of chemical and metallurgical complex for use in portland cement production. KnE Materials Science. 2020. No. 6 (1), pp. 143–149. https://doi.org/10.18502/kms.v6i1.8059
11. Fornés I.V., Vaičiukynienė D., Nizevičienė D., Doroševas V. The improvement of the water-resistance of the phosphogypsum by adding waste metallurgical sludge. Journal of Building Engineering. 2021. No. 43. 102861 https://doi.org/10.1016/j.jobe.2021.102861
12. Hassan S., Salah H., Shehata N. Effects of alternative calcium sulphate-bearing materials on cement characteristics in vertical mill and storing. Case Studies in Construction Materials. 2021. No. 14. e00489 https://doi.org/10.1016/j.cscm.2021.e00489
13. Raisa F., Kamouna A., Jelidib A., Chaabounia M. A study on fluoroanhydrite: a solid waste of the chemical industry: characterization and valorization attempts. IOP Conf. Series: Materials Science and Engineering. 2012. No. 28. 012025. doi:10.1088/1757-899X/28/1/012025
14. Курмангалиева А.И., Аниканова Л.А., Волкова О.В., Кудяков А.И., Саркисов Ю.С., Абзаев Ю.А. Активация процессов твердения фторангидритовых композиций химическими добавками солей натрия // Известия вузов. Химия и химическая технология. 2020. Т. 63. Вып. 8. С. 73–80. DOI 10.6060/ivkkt.20206308.6137
14. Kurmangalieva A.I., Anikanova L.A., Volkova O.V. Activation of hardening processes of fluorogypsum compositions by chemical additives of sodium salts. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2020. Vol. 63. No. 8, pp. 73–80. DOI: 10.6060/ivkkt.20206308.6137
15. Manjit Singh, Mridul Garg. Making of anhydrite cement from waste gypsum. Cement and Concrete Research. 2000. No. 30 (4), pp. 571–577. https://doi.org/10.1016/S0008-8846(00)00209-X
16. Gdoutos E.E. Composite Materials. In: Fracture Mechanics. Solid Mechanics and Its Applications. 2020. Vol. 263. https://doi.org/10.1007/978-3-030-35098-7_11
17. Попов К.Н. Полимерные и полимерцементные бетоны, растворы и мастики. М.: Высшая школа, 1987. 72 с.
17. Popov K.N. [Polymer and polymer-cement concretes, mortars and mastics]. Moscow: Vysshaya shkola. 1987. 72 p.
18. Grigore M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. 2017. Vol. 2 (4). https://doi.org/10.3390/recycling2040024
19. Lei Gu, Togay Ozbakkaloglu. Use of recycled plastics in concrete: A critical review. Waste Management. 2016. No. 51, pp. 19–42 https://doi.org/10.1016/j.wasman.2016.03.005
20. Gumeniuk A., Hela R., Polyanskikh I. [et al.]. Durability of Concrete with Man-made Thermoplastic Sulfur Additive. IOP Conference Series: Materials Science and Engineering: XXIII International Scientific Conference on Advance in Civil Engineering: «CONSTRUCTION – THE FORMATION OF LIVING ENVIRONMENT». Hanoi, Vietnam, 23–26 September 2020. 032012. DOI: 10.1088/1757-899X/869/3/032012.
21. Fediuk R., Mugahed Amran Y., Mosaberpanah M., Danish A., El-Zeadani M., Klyuev S., Vatin N., A сritical review on the properties and applications of sulfur-based concrete. Materials. 2020. No. 13. 4712, DOI: https://doi.org/10.3390/ma13214712
22. Le H., The application of sulfur-asphalt concrete with modifiers in the climatic conditions of Vietnam. IOP Conference Series: Materials Science and Engineering. 2020. No. 890. 012101. DOI: https://doi.org/10.1088/1757-899X/890/1/012101
23. Wagenfeld J.G., Al-Ali K., Almheiri S. [et al.] Sustainable applications utilizing sulfur, a by-product from oil and gas industry: A state-of-the-art review. Waste Management. 2019. No. 95, pp. 78–89. DOI: 10.1016/j.wasman.2019.06.002.
24. Бобылев Ю.Н. Мировой рынок нефти: основные тенденции 2018 г. // Экономическое развитие России. 2019. № 1 (26). С. 10–13.
24. Bobylev Yu.N. World oil market: main trends in 2018. Ekonomicheskoye razvitiye Rossii. 2019. No. 1 (26), pp. 10–13. (In Russian).
25. Патуроев В.В. Полимербетоны. НИИ бетона и железобетона. М.: Стройиздат, 1987. 286 p.
25. Paturoev V.V. Polimerbetony. NII betona i zhelezobetona [Polymer concrete. Research Institute of Concrete and Reinforced Concrete]. Мoscow: Stroyizdat. 1987. 286 p.
26. Mohamed Sassi, Ashwani K. Gupta Sulfur recovery from acid gas using the claus process and high temperature air combustion technology. American Journal of Environmental Sciences. 2008. No. 4 (5), pр. 502–511. DOI: 10.3844/ajessp.2008.502.511
27. Dugarte M., Martinez-Arguelles G., Torres J. Experimental evaluation of modified sulfur concrete for achieving sustainability in industry applications. Sustainability. 2019. No. 11 (1), p. 70. https://doi.org/10.3390/su11010070
28. Королев Е.В., Прошин А.П., Баженов Ю.М., Соколова Ю.А. Радиационно-защитные и коррозионностойкие серные строительные материалы. 2-е изд. М.: Палеотип, 2006. 272 с.
28. Korolev E.V., Proshin A.P., Bazhenov Yu.M., Sokolova Yu.A. Radiatsionno-zashchitnyye i korrozionnostoykiye sernyye stroitel’nyye materialy. 2-ye izdaniye. [Radiation-protective and corrosion-resistant sulfur building materials / 2nd edition]. Moscow: Paleotype. 2006. 272 p.

For citation: Gumeniuk A.N., Polyanskikh I.S., Khodyreva M.A., Shevchenko F.E., Pudov I.A., Pervushin G.N., Yakovlev G.I. Composite materials based on fluoranhydrite and industrial sulfur. Stroitel’nye Materialy [Construction Materials]. 2021. No. 8, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-794-8-4-10


Print   Email