Log in

Sound Insulation of enclosing Structures in high-rise Buildings. Requirements and Methods of Support

Number of journal: №3-2019
Autors:

Shubin I.L.
Aistov V.A.
Porozchenko M.A.

DOI: https://doi.org/10.31659/0585-430X-2019-768-3-33-43
УДК: 699.84

 

AbstractAbout AuthorsReferences
In article questions of providing acoustically comfortable conditions in the high-rise buildings which were widely adopted in the last decades are considered. The main sources of the internal and external noise influencing the population of high-rise buildings are described. Features of mechanisms of transfer of air, shock and structural noise through internal enclosing structures of the building are considered. It is noted that the main way of fight against noise in high-rise buildings is providing appropriate sound insulation with protections of rooms of buildings of air, shock and structural noise. Questions of assessment and rationing of sound insulation are considered. The basic principles of design, calculation procedures and standard technical solutions of sound vibration insulation are given in high-rise buildings. Features of design of floating floors, suspended ceilings, unary and double walls and partitions, ways of strengthening of sound insulation of protections in the existing buildings are in detail considered. Features of isolation of places of communications passage through enclosing structures (pipes of cold and hot water supply, the sewerage, ventilation, etc.) are described. The standard design base for introduction in domestic construction practice of the soundproofing systems providing a combination of effective solutions of tasks of noise reduction to high-quality finishing of rooms on the basis of use of modern sound-proof and sound-absorbing materials is described. The recommendations about providing standard sound insulation of protections provided in article in high-rise buildings will allow to increase quality of the performed project works on sound insulation, to reduce terms and to reduce design cost, to reduce risks of miscalculations at design of sound insulation and to provide finally standard, acoustically favorable conditions of work, accommodation and rest of the population of high-rise buildings.
I.L. SHUBIN, Corresponding Member of RAACS, Doctor of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.A. AISTOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.A. POROZCHENKO, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Scientific-Research Institute of Building Physics of the Russian Academy architecture and construction sciences (21, Lokomotivniy proezd, Moscow, 127238, Russian Federation)

1. Tsukernikov I.E., Shubin I.L., Nevenchannaya T.O. Analysis of rules for noise and vibration rationing and hygienic estimation at workplaces and in living conditions in residential buildings and premises. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 6, pp. 3–7. (In Russian).
2. Spiridonov A.V., Tsukernikov I.E., Shubin I.L. Monitiring and analysis of construction regulations in the field room inner climate and safety of harmful exposure. Part 3. Acoustic factors (noise, vibration, infrasound, ultrasound). BST: Byulleten’ stroitel’noi tekhniki. 2016. No. 6, pp. 8–11. (In Russian).
3. Tsukernikov I.E., Tikhomirov L.A., Solomatin E.O., Saltykov I.P., Kochkin N.A. Building acoustics problem solution as a factor providing safety and comfort residing in buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 6, pp. 49–52. (In Russian).
4. Osipov G.L., Bobilev V.N., Borisov L.A. et all. Zvukoizolyatsiya i zvukopogloshchenie [Sound insula tion and absorption]. Мoscow: AST, Astrel. 2004. 450 p.
5. Schallschutz nach DIN 4109. Aktualisierte Neuauflage. Wienerberger. Ausgabe Oktober 2016.
6. Kürer R. VDI 4100 Schallschutz von Wohnungen – Kriterien für die Planung und Beurteilung. Zeitschrift für Lärmbekämpfung. 1993.40, pp. 37–42.
7. Müller Egbert. Güteschutz Estrich RAL-RG 818. Estrichtechnik, IBF/1999. Heft IV.
8. Porozchenko M.A. The impact noise insulation of the enclosing structures of the building. BST: Byulleten’ stroitel’noi tekhniki. 2018. No. 6, pp. 34–35.(In Russian).
9. Gorin V.A., Klimenko V.V., Porozchenko M.A. Investigation of sound insulation of multi-layer floor slabs. Stroitel’stvo i reconstruczia. 2018. No. 3 (77), pp. 46–51. (In Russian).
10. Kochkin A. A., Shubin I. L. Study of layered vibro-damped elements and structures of them for noise reduction. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2018. No. 3 (375), pp. 184–187. (In Russian).
11. Shubin I.L., Kochkin N.А. To the calculation of sound insulation of fencing in the reconstruction of buildings using laminated vibrodamping elements. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2018. No. 3 (375), pp. 236–241. (In Russian).
12. Kochkin А.А., Shubin I.L., Shashkova L.E., Kochkin N.A. Design of sound insulation of layered elements of finite dimensions. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2016. No. 4 (364), pp. 161–166. (In Russian).
13. Poroshenko M.A., Minaeva N.A., Sukhov V.N. Evaluation of airborne sound insulation of a wall with a flexible plate on the relative. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 7, рр. 54–56. (In Russian).
14. Kochkin A.A., Ciryatkova A.V., Shubin I.L. The study of airborne sound insulation of double cladding structures. BST: Byulleten’ stroitel’noi tekhniki. 2018. № 6 (1006), pp. 20–21. (In Russian).
15. Antonov A.I., Ledenev V.I., Matveeva I.V., Shubin I.L. Evaluation of the distribution of direct sound from the sound insulation fences of technological equipment of textile and light industry. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2016. No. 4 (364), pp. 167–173. (In Russian).
16. Leliuga O.V., Ovsyannikov S.N., Shubin I.L. The study of sound insulation internal walling including the structural transmission. BST: Byulleten’ stroitel’noi tekhniki. 2018. No. 7 (1007), pp. 39–43. (In Russian).

For citation: Shubin I.L., Aistov V.A., Porozchenko M.A. Sound Insulation of enclosing Structures in high-rise Buildings. Requirements and Methods of Support. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 33–43. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-33-43 (In Russian).

Strength and deformation characteristics of modern PU-foams economy class

Number of journal: №3-2019
Autors:

Konstantinov A.P.
Semenov V.S.

DOI: https://doi.org/10.31659/0585-430X-2019-768-3-28-32
УДК: 691.175.664

 

AbstractAbout AuthorsReferences
The work was done the analysis of the strength and deformation characteristics of the modern PU-foams, and the rationale for their application in erection to joints of window assemblies adjoined to wall openings. The study of PU-foam econocom segment was made. The analysis of the system “window unit-erection joint” under the influence of the existing complex of loads and actions was performed. The assessment of linear temperature deformations of PVC, aluminum and wood windows was made. Laboratory tests of five types of PU-foams were made. The following PU-foam characteristics were determined: density, tensile strength and elongation at break. It was found that at the average PU- foams density less than 13,46 kg/m3, their average tensile strength and elongation at break were 0,058 MPa and 1,37%, respectively. The obtained indicators were significantly lower than the standard values. It was determined that modern PU-foams economy segment, presented on the russian market, have a limited scope and can only be used for the windows not affected by significant changes in operating temperatures (located indoors, protected from direct sunlight), as well as any wooden windows. For installation of large-format color PVC windows it is necessary to use PU-foams with the relative elongation at break not less than 10%.
A.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.S. SEMENOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Boriskina I.V., Shvedov N.V., A. Plotnikov A.A. Sovremennye svetoprozrachnye konstrukcii grazhdanskih zdanij. Okonnye sistemy iz PVH [Modern translucent structures of civil buildings. Handbook of the designer. Volume II PVC Window systems]. Saint Petersburg: NIUPC «Mezhregional’nyj institut okna». 2012. 320 p.
2. Korkina E.V. Criterion of efficiency of replacement of double-glazed windows in the building for the purpose of energy saving. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 6, pp. 6–11. (In Russian).
3. Guideline for installation of windows and external pedestrian doors. Rosenheim: IFT Rosenheim. 2016. 251 p.
4. Boriskina I.V., Plotnikov A.A., Zaharov A.V. Proektirovanie sovremennyh okonnyh sistem grazhdanskih zdanii [Design of modern window systems for civil buildings]. Saint Petersburg: Vybor. 2008. 360 p.
5. Boriskina I.V., Shchurov A.N., Plotnikov A.A. Okna dlya individual’nogo stroitel’stva [Windows for individual construction]. Moscow: Funke Rus, 2013. 320 p.
6. Konstantinov A.P. Calculation of PVC window blocks for wind load. Perspektivy nauki. 2018. No.  1 (100), pp. 26–30. (In Russian).
7. Konstantinov A., Lambias Ratnayake M. Calculation of PVC windows for wind loads in high-rise buildings. E3S Web of Conferences. 2018. Vol. 33. 02025.
8. Kalabin V.A. Assessment of PVC profile thermal deformation. Part 1. Winter transverse deformations. Svetoprozrachnye konstrukcii. 2013. No. 1–2, pp. 6–9. (In Russian).
9. Kalabin V.A. Assessment of PVC profile thermal deformation. Part 2. Summer transverse deformations. Svetoprozrachnye konstrukcii. 2013. No. 3, pp. 12–15. (In Russian).
10. Kalabin V.A. Assessment of PVC profile thermal deformation. Part 2. Summer transverse deformations. Svetoprozrachnye konstrukcii. 2013. No. 4, pp. 34–38. (In Russian).
11. Verkhovsky A.A., Zimin A.N., Potapov S.S. The applicability of modern translucent walling for the climatic regions of Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 6, pp. 16–19. (In Russian).
12. Konstantinov A.P., Ibragimov A.M. Complex approach to the calculation and design of translucent structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 1–2, pp. 14–17. (In Russian).

For citation: Konstantinov A.P., Semenov V.S. Strength and deformation characteristics of modern PU-foams economy class. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 28–32. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-28-32 (In Russian).

Achievement of ergonomics in architecture due to the use of façade décor on the basis of mineral wool

Number of journal: №3-2019
Autors:

Goncharov Y.A.
Dubrovina G.G.

DOI: https://doi.org/10.31659/0585-430X-2019-768-3-14-18
УДК: 728

 

AbstractAbout AuthorsReferences
The new development of LLC “Ksellma” – light facade decor on the basis of a mineral wool insulant is presented. The decor consists of separate elements formed from mineral wool insulant using the template, and covered with protective and decorative mineral composition. After assembling and fixing the decor elements on the facade according to the project, the connections between them are puttied, the decor is included in the general system of insulation of facades. In addition to decorative and heat-insulating functions, the light decor contributes to improvement of sound insulation and can be used as fire-fighting cuts. The prospects for the use of light decor in the new construction of large-panel houses to create a “warm seam” and increase the architectural expressiveness of the facades, as well as the renovation of five-storey residential buildings of the first mass series are substantiated. These houses have enough resource of physical durability, but absolutely morally outdated. They require thermal-technical modernization, provision of their individuality and visual appeal. The light weight of decorative elements (for example, an element of 200601000 mm weighs 1.8 kg) practically does not load the existing foundations of five-storey houses even reconstructed with the superstructure of additional stories.
Y.A. GONCHAROV, Engineer, Chairman of the Board of Directors
G.G. DUBROVINA, Research Engineer, Technical Advisor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

“BELGIPS» JSC, «Ksellma» LLC (24, Kozlova Street, Republic of Belarus, 220037, Minsk)

1. Budarin E.L., Saprykina N.A. Features of the principle of ergonomics in architecture and design of the modern housing. Ontology of Designing. 2016. Vol. 6. No. 2 (20), pp. 205–215. http://agora.guru.ru/scientific_journal/files/Ontology_Of_Designing_2_2016_st.pdf (In Russian).
2. Grishneva E.A. Increase of power efficiency in real estate objects construction with implementation of “Smart Home” concept. ACADEMIA. Arkhitektura i stroitel’stvo. 2010. No. 3, pp. 429–444. (In Russian).
3. Zhukova E.A., Chugunkov A.V., Rudnitskaya V.A. Facade decoration systems. Nauka. Stroitel’stvo. Obrazovanie. 2011. No. 1. http://www.nso-journal.ru/public/journals/1/issues/2011/01/15.pdf
4. Treskova N.V., Pushkin A.S. Modern wall materials and products. Stroitel’nye materialy, tekhnologii, oborudovanie 21 veka. 2013. No. 11 (178), pp. 32–35. (In Russian).
5. Zhukov A.D., Orlova A.M., Naumova T.A., Talalina I.Yu., Maiorova A.A. Building insulation systems. Nauchnoe obozrenie. 2015. No. 7, pp. 218–221. (In Russian).
6. Zhukov A.D., Bobrova E.Yu., Karpova A.O. Faсade Systems: durability, utility and beauty. Vestnik MGSU. 2015. No. 10, pp. 201–207. (In Russian).
7. Sobinova K.S., Ozhishchenko O.A., Savitskii N.V. Analysis of existing systems of thermal insulation facades. Vestnik Pridneprovskoi gosudarstvennoi akademii stroitel’stva i arkhitektury. 2013. No. 1–2, pp. 178–184. (In Russian).
8. Meshalkin E.A. Facade systems: application trend and fire hazard. Pozharovzryvobezopasnost’. 2007. Vol. 16. No. 2, pp. 12–18. (In Russian).
9. Selyutina L.G., Kuponosova Yu.N. Privolzhskii nauchnyi vestnik. 2016. No. 5 (56), pp. 111–113. (In Russian).
10. TCP 45-2.04-43–2006 * (02250) Technical code of the established practice of the Republic of Belarus, Building heat engineering. Construction design standards. Minsk: Ministry of Architecture and Construction. 2006, 47 p. (In Russian).
11. Zhukov D.D., Dubrovina G.G. Thermal insulation materials. Informatsionnyi byulleten’ «Stroitel’nyi rynok». 2006. No. 15. (In Russian).

For citation: Goncharov Y.A., Dubrovina G.G. Achievement of ergonomics in architecture due to the use of façade décor on the basis of mineral wool. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 14–18. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-14-18 (In Russian).

Universal system of prefabricated housing construction RB-South – from the idea to implementation on the construction site

Number of journal: №3-2019
Autors:

Pavlenko D.V.
Shmelev S.E.
Kuznetsov D.V.
Sapronov D.V.
Fisenko S.S.
Damrina N.V.

DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10
УДК: 69.056.52

 

AbstractAbout AuthorsReferences
This system makes it possible to move from the use of usual typical block-sections towards prefabricated individual houses with a reduction in construction time by 1.5–2 times compared to monolithic, and, as a result, a reduction in the cost of a square meter. The use of a new system of prefabricated housing construction makes it possible to eliminate the disadvantages of monolithic construction – long periods, work with concrete under building conditions, low quality control, concrete curing works under various climatic conditions, a large amount of work with small-piece materials, etc.; to address shortcomings of typical panel block-sections – no free layouts, the inability to quickly change the apartment layouts, “dull” facades, lack of adaptation of the first floors under technological requirements of non-residential premises, the inability to place a built-in underground parking without the use of monolithic stylobate and to form a modern urban environment, etc. The article describes new non-standard structural solutions confirmed by the tests conducted. Also, the features of the project implementation since the birth of a new advanced idea to its implementation on the construction site are specified and worked out.
D.V. PAVLENKO, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.E. SHMELEV, Honoured Builder of Russia
D.V. KUZNETSOV, Deputy General Director, Chief Engineer
D.V. SAPRONOV, Deputy General Director, Chief Architect
S.S. FISENKO, Head of Building Structures Department
N.V. DAMRINA, Chief of Personnel

SC ”Southern Regional Research and Design Institute of Urban Planning (6/3, Sedova Street, Rostov-on-Don, 344006, Russian Federation)

1. Antipov D.N. Industrial housing construction in the 21st century. Aktual’nye voprosy ekonomicheskikh nauk. 2011. No. 23, pp. 110–113. (In Russian).
2. Kalabin A.V., Kukovyakin A.B. Mass housing estate: problems and prospects. Akademicheskii vestnik UralNIIproekt RAASN. 2017. No. 3 (34), pp. 55–60. (In Russian).
3. Kazin A.S. Industrial housing construction: yesterday, today, tomorrow. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 10, pp. 22–26. (In Russian).
4. Davidyuk A.N., Nesvetaev G.V. Large-panel housing construction – an important provision for solving the housing problem In Russia. Stroitel’nye Materialy [Construction Materials]. 2013. No. 3, pp. 24–26. (In Russian).
5. Baranova L.N. Development of industrial housing construction and the industry of construction materials in various regions of Russia. Vestnik Rossiiskoi akademii estestvennykh nauk. 2013. No. 3, pp. 61–63. (In Russian).
6. Kozelkov M.M., Lugovoi A.V. Analysis of the basic regulatory legal documents in the field of designing and construction for recycling. Vestnik NIC “Stroitel’stvo”. 2017. No. 4 (15), pp. 134–145. (In Russian).
7. Sokolov B.S., Zenin S.A. Analysis of the regulatory base for designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 4–12. (In Russian).
8. Trishchenko I.V., Kastornykh L.I., Fominykh Yu.S., Gikalo M.A. Evaluation of effectiveness of investment project of reconstruction of large-panel housing construction enterprises. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 10, pp. 39–43. (In Russian).
9. Manukhina O.A., Rybko V.S., Romanov N.R. Monolithic construction: problems and prospects. Ekonomika I predprinimatel’stvo. 2018. No. 4 (93), pp. 15–18. (In Russian).
10. Usmanov Sh.I. Formation of economic strategy of development of industrial housing construction In Russia. Politika, gosudarstvo i pravo. 2015. No. 1 (37), pp. 76–79. (In Russian).
11. Kotova L.G., Shevchenko A.P. Innovative strategy of the enterprises of construction branch. XXI vek: itogi proshlogo i problemy nastoyashchego. 2014. T. 1. No. 2 (18), pp. 170–174. (In Russian).
12. Shmelev S.E. Myths and Truth about Monolithic and Precast Housing Construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 3, pp. 40–42. (In Russian).
13. Nikolaev S.V. Arrangement of balconies with the help of hollow core floor slabs. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 10, pp. 17–21. (In Russian).
14. Nikolaev S.V. Renovation of housing stock of the country on the basis of large-panel housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 3–7. (In Russian).
15. Nikolaev S.V., Schreiber A.K., Etenko V.P. Panel-frame house-building-a new stage in the development of efficiency. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2, pp. 3–7. (In Russian).
16. Nikolaev S.V., Schreiber A.K., Khayutin Y.G. Innovative system of frame and panel construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 5, pp. 3–5. (In Russian).

For citation: Pavlenko D.V., Shmelev S.E., Kuznetsov D.V., Sapronov D.V., Fisenko S.S., Damrina N.V. Universal system of prefabricated housing construction RB-South – from the idea to implementation on the construction site. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 4–10. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10 (In Russian).

Heat Insulation Material on the Basis of Expanded Perlite and Expanded Mineral Binder

Number of journal: №1-2-2019
Autors:

Zin Min Htet
Tikhomirova I.N.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-107-112
УДК: 691-405.8; 666.9-127; 661.683.3

 

AbstractAbout AuthorsReferences
The article is devoted to the problem of creating an effective fire-resistant mineral heat insulation material based on a binder, the basis of which is a gel of hydrosilicic acid, obtained by volumetric curing of foamed sodium liquid glass and expanded perlite. The data of the experiment on the selection of the type and quantity of foaming agent, providing producing of masses with a different coefficient of foaming are presented. The ratios between the amount of binder and perlite, which make it possible to mold the product by injection molding method and to obtain materials with different strength and density, are determined. The methods of strengthening the material due to the partial introduction of dust-like quartz (marshalite) into the composition, as well as due to the modification of liquid glass are considered. The properties of thermal insulation material samples based on perlite sand and liquid glass modified by polymethylsiloxane are presented.
ZIN MIN HTET, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.N. TIKHOMIROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

D. Mendeleev University of Chemical Technology of Russia (20, Geroev Panfilovtsev Street, Moscow, 125480, Russian Federation)

1. Gorlov Yu.P. Tekhnologiya teploizolyatsionnykh materialov [Technology thermal insulation materials]. Moscow: Stroyizdat. 1980. 399 p.
2. Zhigulina А. An Objective Measure of Comfort in Residential Buildings. Urban Planning. Building Envelopes. 2012. No. 1, pp. 80–81.
3. Korenkov S. Filled Foam Concretes in Building Envelope Construction. Building Materials. 2000. No. 8, pp. 12–14.
4. Kalugin V.A., Lotov V.A., Revenko V.V. The Management of the processes of pore teroperability products based on liquid glass. Steklo i keramika. 2009. No. 11, pp. 19–22. (In Russian).
5. Pimenov A. N. Vysokoprochnyi kislotostoikii beton na osnove zhidkogo stekla i aktivnogo napolnitelya. Povyshenie dolgovechnosti promzdanii i sooruzhenii za schet primeneniya polimerbetonov [High-strength acid-resistant concrete based on liquid glass and active filler. Increasing the durability of buildings and structures through the use of polymer concretes]. Tashkent. 1978. 220 p.
6. Ryzhkov I.V., Tolstoy V.S. Fiziko-khimicheskie osnovy formirovaniya svoistv smesei s zhidkim steklom [Physical and chemical bases of formation of properties of mixtures with liquid glass]. Khar’kov: Vishcha shkola. 1975. 136 p.
7. Towpath P.P., Czuchnowski N.A. The influence of the nature of liquid glass on the properties of silicate cements. Installation and special construction works. Ser. IV. Anticorrosive works in construction. 1980. Vol. 7, pp. 13–14.
8. Ivanov M.Y. Granular insulation material based on the modified liquid glass composition. Cand. Diss. (Engineering). Bratsk. 2007. 200 p.
9. Mashkin N.A., Ignatova O.A. Stroitel’nye materialy [Construction materials]. Novosibirsk: Stroyizdat, 2012. 200 p.
10. Grigoriev P.N., Matveev M.A. Rastvorimoe steklo [Soluble glass]. Moscow: Stroyizdat, 1956. 442 p.
11. Tarasova A.P. Zharostoikie vyazhushchie na zhidkom stekle i betony na ikh osnove [Heat-Resistant binders on liquid glass and concrete on their basis]. Moscow: Stroyizdat, 1982. 130 p.
12. Korneev V.I., Danilov V.V. Zhidkoe i rastvorimoe steklo [Liquid and soluble glass]. Saint-Petersburg: Stroyizdat, 1996. 135 p.
13. Mizandrontsev A.G., Petrov V.P., Freze A.N. Osobennosti tekhnologii poristykh zapolnitelei iz perlitov Taskeskenskogo mestorozhdeniya [Features of technology of porous fillers from perlite of Dashkesan Deposit]. Moscow: Perlity. 1981, pp. 247–252.
14. Aronchik A.M. Effective materials products based on expanded perlite of the plant “Stroyperlit”. Stroitel’nye Materialy [Construction Materials]. 1971. No. 1, pp. 168–169. (In Russian).
15. Shabanova N.A., Trukhanov N.V. the Process of transition Zola in the gel and the xerogel in the colloidal silica. Colloidnyi Journal. 1989. No. 51, pp. 1157–1163. (In Russian).
16. Khananashvili L.M. Khimiya i tekhnologiya elementoorganicheskikh monomerov i polimerov [Chemistry and technology of organoelement monomers and polymers]. Moscow: Himiya, 1998. 528 p.
17. Zin M.H., Tikhomirova I.N. Heat-insulating materials on the basis of the made foam liquid glass. Uspekhi v khimii i khimicheskoi tekhnologii. 2017. Vol. 31. No. 3 (184), рр. 34–36. (In Russian).

For citation: Zin Min Htet, Tikhomirova I.N. Heat insulation material on the basis of expanded perlite and expanded mineral binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 107–112. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-107-112 (In Russian).

Some Aspects of Technogenic Metasomatosis In Construction Material Science

Number of journal: №1-2-2019
Autors:

Lesovik V.S.
Fomina E.V.
Ayzenshtadt A.M.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106
УДК: 691.3

 

AbstractAbout AuthorsReferences
In this paper mechanisms of construction composite evolution when it’s using under varied environmental conditions from the point of view of technogenic matasomatosis are studied. The term «technogenic matasomatosis in construction material science» is formed and developed in framework of scientific field «geonics» and «geomimetics». The functional system of metasomatic transformation of construction composite is presented using metasomatic column as an example. The importance of thermodynamic analysis for energy potential of material surface as a basis for metasomatic transformations is shown. The main theoretical problems of technogenic matasomatosis in construction material science are observed. Solution of them will be a base for design of composites with self-sealing properties and composites those are able to adapt to environmental exposure. Development of this research field is oriented on improving of comfortability of the Homo Sapiens in the system «human – material – life environment».
V.S. LESOVIK1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.V. FOMINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.M. AYZENSHTADT2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Northern (Arctic) Federal University of M.V. Lomonosov (17, emb. Northern Dvina, Arkhangelsk, 163002, Russian Federation)

1. Zharikov V.A. Мetasomatosis and metasomatic rocks [Metasomatizm i metasomaticheskie porody]. Moscow. Nauchny mir. 1998. 442 p.
2. Lesovik V.S. Geonika (geomimetika). Primery vnedreniya v oblasti materialovedeniya. [Geonickname (geomimmetics). Implementation examples in construction material science]. Belgorod: BSTU. 2016. 287р.
3. Vedernikova A.S. A membrane form of a metasomatoz in silicon minerals – primary source of life on Earth. Problems of geology and development of a subsoil: works VII of the International symposium of a name of the academician M.A. Usov devoted to the 400 anniversary of Tomsk. Tomsk: TPU. 2004. pp. 751–754. (In Russian).
4. Gorokhova M.S. Paradoxes of a metasomatoz of vegetable and live substance and problem of biomineralogy. Mineralogiya tekhnogeneza. 2012. No. 3, pp. 190–201. (In Russian).
5. Pospelov G.L. Paradoxes, geological and physical essence and mechanisms of a metasomatoz [Paradoksy, geologo-fizicheskaya sushchnost’ i mekhanizmy metasomatoza]. Novosibirsk: Nauka.1973. 353 p.
6. Korzhinsky D.S. A sketch of metasomatic processes. The main problems in the doctrine about magmatogenny ore fields. Moscow: Academy of Sciences of the USSR publishing house. 1955, pp. 334–456. (In Russian).
7. Lesovik V.S. Geonika (geomimetika). Primery realizacii v stroitel’nom materialovedenii. [Geonickname (geomimmetics). Examples of realization in construction materials science]. Belgorod: BSTU. 2014. 206 p.
8. Lesovik V.S., Fomina E.V. Crystal-genetic aspects of a technogenic metasomatoz in construction materials science. Intellectual construction composites for green construction: The international scientific and practical conference devoted to the 70 anniversary of the honored worker of science of the Russian Federation, the corresponding member of RAACS, the Doctor of Engineering, prof. V.S. Lesovik. Belgorod: BGTU of V.G. Shukhov. 2016, pp. 151–156. (In Russian).
9. Bhanumathidas N., Kalidas N. Metabolism of cement chemistry. The Indian Concrete Journal. 2003. Vol. 77 (9), pp. 1304–1306.
10. Lesovik V.S. Genetic bases of energy saving in the industry of construction materials. Izvestiya vuzov. Stroitel’stvo. 1994. No. 7, 8, pp. 96–100. (In Russian).
11. Lesovik V.S. Geonika. Predmety i zadachi [Geonics. Subject and objectives]. Belgorod: BSTU. 2012. 100 p.
12. Lesovik V.S., Mospan A.V., Belentsov Yu.A. Silicate products on the granulated fillers for aseismic construction. Vestnik BGTU im. V.G. Shuhova. 2012. No. 4, pp. 62–65. (In Russian).
13. Lessowik W.S. 2015. Geonik. Geomimetik als grundlage für die synthese von intelligent bauverbundwerkstoffen. 19 Internationale baustofftagung ibausil. Weimar: Bauhaus-Universitat. рр. 183–189.
14. Zapivalov N.P., Gurieva S.M., Dakhnova M.V., Pankina R.G., Serdyuk Z.Ya. Communication of isotope composition of CO2 carbon and carbonates with collection properties of carbonate breeds. Doklady Akademii nauk SSSR. 1982. No. 2 (262), pp. 396–399. (In Russian).
15. Zapivalov N.P. Imposed metasomatoz: natural and technogenic nanoeffects. Problems of geology and development of a subsoil: works XVII of the International symposium of a name of the academician M.A. Usov of students and young scientists devoted to the 150 anniversary since the birth of the academician V.A. Obruchev and to the 130 anniversary of the academician M.A. Usov, founders of the Siberian mining-and-geological school. Tomsk: TPU. 2013, pp. 228–231. (In Russian).
16. Korzhinskiy D.S. Izbrannye trudy. Osnovy metasomatizma i metamagmatizma. [Chosen works. Bases of metasomatism and metamagmatism]. Moscow: Nauka. 1993. 239 p.
17. Korzhinsky D.S. Open systems with quite mobile components and the rule of phases. Izvestiya AN SSSR. Seriya geologiya. 1949. No. 2, pp. 3–14. (In Russian).
18. Shabalin L.I. Osnovy molekulyarno-kineticheskoj koncepcii rudo- i magmoobrazovaniya [Basics of the molecular-kinetic concept of ore and magma formation]. Novosibirsk: SNIIGGIMS. 2002. 204 p.
19. Chudnenko K.V. Termodinamicheskoe modelirovanie v geohimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya [Thermodynamic modeling in geochemistry: theory, algorithms, software, and applications]. Novosibirsk: GEO. 2010. 287 p.
20. Rakov L.T., Dubinchuk V.T., Skamnitskaya L.S., Nippers V.V. Mobile impurity in quartz of the Karelian-Kola region. Trudy Karel’skogo nauchnogo centra RAN. 2016. No. 10, pp. 100–110. (In Russian).
21. Zuev V.V., Pocelueva L.N., Goncharov Yu.D. Kristalloehnergetika kak osnova ocenki svojstv tverdotel’nyh materialov [Crystalloenergy as the basis for assessing the properties of solid materials]. Saint-Petersburg: 2006. 139 p.
22. Imre Biczok Concrete corrosion risk and concrete protection. Budapest: Akademiai Kiado. 1964. 548 p.
23. Andrеs E.I., Carlos M.L., Ignacio C. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cement & Concrete Composites. 2012. Vol. 34, pp. 903–910.
24. Glass G.K. and Buenfeld N.R. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science. 2000. Vol. 42 (2), pp. 329–344.
25. Safarov K.B., Stepanova V.F. Regulation of reaction capacity of fillers and increasing sulfate resistance of concretes by combined use of low-calcium fly ash and high-active metakaolin. Stroitel’nye Materialy [Construction Materials]. 2016. No. 5, pp. 70–73. (In Russian).
26. Safarov K.B., Stepanova V.F., Falikman V.R. Effect of mechanical activated low-calcium fly ash on corrosion resistance of hydrotechnical concretes of the Rogun hydropower plant. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 20–25. (In Russian).

For citation: Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106 (In Russian).

Evolution of Approaches to Design of Autoclave Hardening Materials

Number of journal: №1-2-2019
Autors:

Nelyubova V.V.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-88-99
УДК: 691:666.97.035.56

 

AbstractAbout AuthorsReferences
The main stages of the development of technology of autoclaved materials are given. Features of transformation of approaches to design of materials of autoclave hardening with due regard for problems of production, geo-economic conditions, parameters of technology and other factors are shown. The necessity of transition from classical technology, which is based on the use of traditional natural components, to utilization and modification approaches, providing improving technical and economic indices of the materials of autoclave hardening in terms of reduction of material and energy costs when obtaining products of specified quality is substantiated. Modern methodological bases for increasing the efficiency of autoclave hardening materials, when using natural and anthropogenic raw materials of various genotypes, are presented. It is shown that the basis of the modern concept of control over the processes of structure formation of materials of autoclave hardening as a guarantor of obtaining materials with an optimal combination of quality indicators is the most complete use of the possibilities of raw materials without significant complication of the production process.
V.V. NELYUBOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Khint I.A. O nekotorykh osnovnykh voprosakh avtoklavnogo izgotovleniya izvestkovo-peschanykh izdelii [On some basic issues of autoclaved manufacturing of lime-sand products]. Tallinn: Estonian state publishing house. 1954. 80 p.
2. Khint I.A. Opyt zavoda «Kvarts» po dezintegratornomu sposobu podgotovki syr’ya dlya proizvodstva silikatnykh izdelii [Experience of the plant “Quartz” in the disintegrating method of raw materials preparation for the production of silicate products]. Moskow: Promstroyizdat. 1952. 12 p.
3. Khint I.A. Ob osnovnykh problemakh mekhanicheskoi aktivatsii [On the main problems of mechanical activation]. Tallinn: Estonian state publishing house. 1977. 14 p.
4. Rebinder P.A. Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika. Izbrannye trudy [Surface phenomena in dispersed systems. Physico-chemical mechanics. Selected Works]. Moscow: Nauka. 1979. 348 p.
5. Bozhenov P.I. Tekhnologiya avtoklavnykh materialov [Technology of autoclave materials]. Leningrad: Stroyizdat. 1978. 368 p.
6. Abrosenkova V.F. Research in the field of lime-sand building materials hardening without heat treatment. Diss… Candidate of Science (Engineering). Leningrad. 1962. 133 p.
7. Abrosenkova V.F., Logginov G.I., Rebinder P.A. Binding of lime in calcium hydrosilicate under normal conditions. Report of Academy of sciences of USSR. 1957. Vol. 115. No. 3, pp. 509–511.
8. Silaenkov E.S. Dolgovechnost’ izdelii iz yacheistykh betonov [Durability of cellular concrete products]. Moscow: Stroyizdat. 1986. 176 p.
9. Krivitskii M.Ya., Levin N.I., Makarichev V.V. Yacheistye betony (tekhnologiya, svoistva i konstruktsii) [Cellular concretes (technology, properties and structures)]. Moskow: Stroyizdat. 1972. 137 p.
10. Volzhenskiy A.V. On the conditions of formation and structure of cementing substances in automatic materials. Reports of the inter-university conference on the study of autoclave materials and their use in construction. Leningrad: LISI. 1959, pp. 93–97.
11. Lesovik V.S. Genetic basis of energy saving in the building materials industry. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 1994. No. 7–8, pp. 96–100. (In Russian).
12. Lesovik V.S. Povyshenie effektivnosti proizvodstva stroitel’nykh materialov s uchetom genezisa gornykh porod [Improving the efficiency of production of building materials taking into account the genesis of rocks]. Moscow: IASV. 2006. 155 p.
13. Volodchenko A.N., Lesovik V.S., Alfimov S.I., Zhukov R.V. By-products of the mining industry in the production of building materials. Sovremennye naukoemkie tekhnologii. 2005. No. 10, p. 79. (In Russian).
14. Savchenko E.S., Gridchin A.M., Lesovik B.C., Smolyago G.A. Conceptual approaches to solving housing problem in the Russian Federation on the example of the Belgorod region. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 9–11. (In Russian).
15. Lesovik V.S., Volodchenko A.N., Alfimov S.I., Zhukov R.V., Garanin V.K. Cellular concrete with application of the Arkhangelsk diamondiferous province by-products. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2007. No. 2 (578), pp. 13–18. (In Russian).
16. Lesovik V.S. Environmental aspects of building materials science. Promyshlennoe i grazhdanskoe stroitel’stvo. 2008. No. 8, pp. 19–20. (In Russian).
17. Volodchenko A.N., Lesovik V.S. Silicate autoclave materials using nano-dispersed raw materials. Stroitel’nye Materialy [Construction Materials]. 2008. No. 11, pp. 42–44. (In Russian).
18. Volodchenko A.N., Zhukov R.V., Lesovik V.S., Doroganov E.A. Optimization of the properties of silicate materials based on lime-sand-clay binder Stroitel’nye Materialy [Construction Materials]. 2007. No. 4, pp. 66–69. (In Russian).
19. Lesovik V.S The state and prospects of using technogenic raw materials. BST: Byulleten’ stroitel’noi tekhniki. 2014. No. 7 (959), pp. 59–60. (In Russian).
20. Volodchenko A.N., Lesovik V.S. Silicate materials of autoclave hardening on the basis of aluminosilicate raw materials as a factor of optimization of the system “Man – material – live environment”. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2014. No. 3 (663), pp. 27–33. (In Russian).
21. Volodchenko A.N., Lesovik V.S. Prospects for the widening of the range of autoclaved silicate materials Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 34–37. (In Russian).
22. Lesovik V.S., Rakhimbaev I.Sh. Calculation and refinement of thermodynamic properties of highly basic calcium hydrosilicates. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2011. No. 3, pp. 108–110. (In Russian).
23. Kaftaeva M.V., Rakhimbaev Sh.M., Pospelova E.A. Study of the phase composition of autoclave cellular concrete. Sovremennye problemy nauki i obrazovaniya. 2013. No. 5, p. 12. (In Russian).
24. Kaftaeva M.V., Rakhimbaev Sh.M., Zhukov D.A., Kovalevskaya K.Yu., Shugaeva M.A., Marushko M.V. Justification of requirements for raw materials for the autoclave production of gas silicate concretes. Sovremennye problemy nauki i obrazovaniya. 2014. No. 1, p. 186. (In Russian).
25. Rakhimbaev Sh.M., Kaftaeva M.V., Rakhimbaev I.Sh. Thermodynamic analysis of the process of lime slaking using the Born-Haber cycle. Tekhnika i tekhnologiya silikatov. 2015. Vol. 22. No. 1, pp. 2–5. (In Russian).
26. Kaftaeva M.V., Rakhimbaev Sh.M., Komarova N.D., Alekenova R.A. On the effect of cement on the basic properties of gas silicates. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Tekhnicheskie nauki. 2015. No. 4 (185), pp. 107–111. (In Russian).
27. Kaftaeva M.V., Rakhimbaev Sh.M. The microstructure of autoclaved gas silicates and the effect of gypsum stone on it. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2015. Vol. 1. No. 3, pp. 34–41. (In Russian).
28. Kaftaeva M.V., Rakhimbaev Sh.M. Obosnovanie tekhnologii proizvodstva effektivnykh avtoklavny slikatnykh gazobetonov: monografiya [Justification of the production technology of efficient autoclave silicate concrete: a monograph]. Belgorod: BGTU. 2015. 258 p.
29. Kaftaeva M.V., Rakhimbaev Sh.M., Komarova N.D., Kurbatov V.L. Thermodynamic analysis of the reaction of the formation of xonotlite from lime-silica binder during autoclave hardening. Polzunovskii vestnik. 2016. No. 1, pp. 77–81. (In Russian).
30. Strokova V.V. Crystal-chemical approach to the problem of choice of raw materials. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2003. No. 5, pp. 376. (In Russian).
31. Strokova V.V. The current state and environmental problems of the development of the raw materials base of the construction industry of the KMA region. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2004. No. 8, p. 290. (In Russian).
32. Strokova V.V. Managing the processes of synthesis of building materials taking into account the typomorphism of raw materials. Stroitel’nye Materialy [Construction Materials]. 2004. No. 9, p. 53. (In Russian).
33. Lesovik V.S., Strokova V.V. To the problem of using typomorphic characteristics when choosing rational areas of the use of technogenic raw materials. Zapiski Gornogo instituta. 2005. Vol. 166, p. 58. (In Russian).
34. Fomina E.V., Altynnik N.I., Strokova V.V., Nelyubova V.V., Bukhalo A.B. Regulation of rheological characteristics of a binder mixture during formation of cellular structure of autoclaved hardening products. Stroitel’nye Materialy [Construction Materials]. 2011. No. 9, pp. 33–35. (In Russian).
35. Fomina E.V., Zhernovskii I.V., Strokova V.V. Features of the phase formation of silicate cellular autoclaved products with aluminosilicate raw materials. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 38–39. (In Russian).
36. Strokova V.V., Alfimova N.I., Cherkasov V.S., Shapovalov N.N. Pressed silicate autoclaved hardening materials with wastes of haydite production. Stroitel’nye Materialy [Construction Materials]. 2012. No. 3, pp. 14–15. (In Russian).
37. Fomina E.V., Strokova V.V., Kudeyarova N.P. Features of the use of pre-slaked lime in cellular autoclaved concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2013. No. 5 (653), pp. 29–34. (In Russian).
38. Volodchenko A.N., Strokova V.V. Development of scientific bases of production of silicate autoclave materials using clay raw materials. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 25–31. (In Russian).
39. Volodchenko A.N., Strokova V.V. Improving the efficiency of silicate cellular autoclaved hardening materials. Vestnik Severo-Vostochnogo federal’nogo universiteta im. M.K. Ammosova. 2017. No. 2 (58), pp. 60–69. (In Russian).
40. Fedin A.A., Chernyshov E.M. Improvement of technology and the elimination of defects in the production of gas silicate products. Improvement of technology and the elimination of defects in the production of gas silicate products. Stroitel’nye Materialy [Construction Materials]. 1962. No. 4, pp. 25–28. (In Russian).
41. Baranov A.T., Chernyshov E.M., Krokhin A.M. Quality increase of cellular concretes by improving their structure. Beton i zhelezobeton. 1977. No. 1. pp. 9–11. (In Russian).
42. Chernyshov E.M., Potamoshneva N.D. Manufacture of silicate autoclave materials using wastes of the enrichment of KMA banded iron formation. Stroitel’nye Materialy [Construction Materials]. 1992. No. 11, pp. 4–5. (In Russian).
43. Chernyshov E.M. Regularities of development of the structure of autoclaved materials. Stroitel’nye Materialy [Construction Materials]. 1992. No. 11, pp. 28–31. (In Russian).
44. Chernyshov E.M., D’yachenko E.I. System researches of structural factors controlling the resistance of silicate autoclave materials to fracture under mechanical loading. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 1996. No. 6. pp. 44–53. (In Russian).
45. Akulova I.I., Chernyshov E.M. Problems, methodology and strategy for managing the development of the production base of a regional housing and construction complex. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2003. No. 7, pp. 82–84. (In Russian).
46. Chernyshov E.M., Fedin A.A., Potamoshneva N.D., Kukhtin Yu.A. Gas silicate: modern flexible technology of material and products. Stroitel’nye Materialy [Construction Materials]. 2007. No. 4, pp. 4–9. (In Russian).
47. Chernyshov E.M. Problems of biotechnologenic compatibility and environmental concepts in the technology and organization of the building materials industry. Stroitel’stvo i rekonstruktsiya. 2009. No. 5 (25), pp. 80–86. (In Russian).
48. Chernyshov E.M., Slavcheva G.S. Evaluation of hygrometric, strength, deformative and thermophysical characteristics of porous concrete. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2003. No. 5–1, pp. 175–185. (In Russian).
49. Ovcharenko G.I., Fomichev Yu.Yu., Frantsen V.B., Viktorov A.V., Samsonov A.Yu., Strel’tsov I.A. Features of silicate brick technology from high calcium ashes of thermal power plants. Polzunovskii vestnik. 2011. No. 1, pp. 156–162. (In Russian).
50. Fomichev Yu.Yu., Muzalevskaya N.V., Ovcharenko G.I., Lyuttseva T.V., Sorokina A.S. Determination of the optimal parameters of lime slaking in high-calcium ash of thermal power plants. Polzunovskii vestnik. 2011. No. 1, pp. 153–156. (In Russian).
51. Ovcharenko G.I., Fomichev Yu.Yu., Frantsen V.B. Features of the formation of the phase composition of silicate stone from high calcium ash of thermal power plants. Polzunovskii vestnik. 2012. No. 1–2, pp. 88–93. (In Russian).
52. Ovcharenko G.I., Gil’miyarov D.I. Phase composition and strength of silicate stone made from lime-ash masses based on acidic ash of thermal power plants. Polzunovskii vestnik. 2012. No. 1–2, pp. 83–88. (In Russian).
53. Ovcharenko G.I., Gil’miyarov D.I. Interrelation of strength and phase composition of autoclaved lime-ash stone. Polzunovskii vestnik. 2013. No. 4–1, pp. 161–163. (In Russian).
54. Kapustin F.L., Ufimtsev V.M., Ermakov A.A., Ivanov V.V., Vishnya B.L., Tsypkin E.B. The increase in ash and slag consumption – the most important factor of reducing negative effect of thermal power plants on environment. Energetik. 2010. No. 4, pp. 34–36. (In Russian).
55. Kapustin F.L., Vishnevskii A.A., Ufimtsev V.M. The use of waste ash and slag mixture in the production of autoclaved gas concrete. Gidrotekhnicheskoe stroitel’stvo. 2017. No. 5, pp. 29–33. (In Russian).
56. Babkov V.V., Kuznetsov D.V., Sakhibgareev R.R., Chuikin A.E., Khalimov R.K., Gaisin A.M. Problems of durability of autoclaved gas concrete. Bashkirskii khimicheskii zhurnal. 2006. Vol. 13. No. 2, pp. 97–99. (In Russian).
57. Babkov V.V., Gabitov A.I., Kuznetsov D.V., Gaisin A.M., Rezvov O.A. Physical and chemical factors affecting the operational state and durability of the exterior walls of buildings based on autoclaved gas concrete blocks. Bashkirskii khimicheskii zhurnal. 2010. Vol. 17. No. 5, pp. 155–158. (In Russian).
58. Babkov V.V., Kuznetsov D.V., Gaisin A.M., Rezvov O.A., Morozova E.V., Arslanbaeva L.S. Problems of reliability of the exterior walls of buildings made from autoclaved aerated concrete blocks and the possibilities of their protection from moisture. Stroitel’nye Materialy [Construction Materials]. 2011. No. 2, pp. 55–57. (In Russian).
59. Bedov A.I., Babkov V.V., Gabitov A.I., Kuznetsov D.V., Gaisin A.M., Rezvov O.A. The possibility of ensuring the operational reliability of the exterior walls of buildings based on autoclaved aerated concrete blocks. Vestnik MGSU. 2011. No. 1–2, pp. 259–262. (In Russian).
60. Gagarin V.G., Pastushkov P.P. Quantitative assessment of energy efficiency of energy-saving measures. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 7–9. (In Russian).
61. Gagarin V.G., Pastushkov P.P. Determination of the calculated moisture content of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 8, pp. 28–33. (In Russian).
62. Pastushkov P.P., Gagarin V.G. Studies of the dependence of thermal conductivity on the density and the coefficient of thermal quality of autoclaved gas concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 26–28. (In Russian).
63. Pastushkov P.P., Grinfel’d G.I., Pavlenko N.V., Bespalov A.E., Korkina E.V. Calculated determination of operating humidity of autoclaved gas concrete in various climatic zones of construction. Vestnik MGSU. 2015. No. 2, pp. 60–69. (In Russian).
64. Grinfel’d G.I. Regulatory support for the use of autoclaved cellular concrete in construction. Stroitel’nye Materialy [Construction Materials]. 2013. No. 11, pp. 4–6. (In Russian).
65. Vylegzhanin V.P., Bataev D.K.S., Gaziev M.A., Grinfel’d G.I. Accounting of the effect of carbonization in the calculation of the long-term deformation of cellular concrete bending structures. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 47–52. (In Russian).
66. Gorshkov A.S., Grinfel’d G.I., Mishin V.E., Nikiforov E.S., Vatin N.I. Increasing the thermotechnical uniformity of the walls made of cellular concrete products through the use of polyurethane glue in masonry. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 57–64. (In Russian).
67. Vaganov V.E., Zaharov V.D., Baranova YU.V., Zakrevskaya L.V., Abramov D.V., Nogtev D.S., Kozij V.N. The structure and properties of cellular gas concrete modified with carbon nanostructures Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 59–61. (In Russian).
68. Leont’ev S.V., Golubev V.A., Shamanov V.A., Kurzanov A.D., Yakovlev G.I., Hazeev D.R. Modification of the structure of heat-insulating autoclaved gas concrete by the dipersion of multi-layer carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 76–83. (In Russian).
69. Leont’ev S.V., Shamanov V.A., Kurzanov A.D., Yakovlev G.I. Multi-criteria optimization of the composition of heat-insulating autoclaved aerated concrete, modified with carbon nanotube dispersion. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 31–40. (In Russian).
70. Ovchinnikov A.A., Akimov A.V., Hozin R.R. Studies of physicomechanical and operational indicators of modified gas concrete. Informacionnaya sreda vuza. 2016. No. 1 (23), pp. 398–405. (In Russian).
71. Aloyan R.M., Ovchinnikov A.A., Akimov A.V. The study of optimal methods for the modification of autoclaved hardening gas concrete in order to increase its strength. Nauchnoe obozrenie. 2014. No. 11–1, pp. 33–36. (In Russian).
72. Sarajkina K.A., Kurzanov A.D. Durability of autoclaved aerated concrete, reinforced with basalt fiber. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta. Urbanistika. 2012. No. 4 (8), pp. 103–109. (In Russian).
73. Kuz’mina V.P. Mechanical activation of materials for construction. Lime. Stroitel’nye Materialy [Construction Materials]. 2006. No. 7, pp. 25–27. (In Russian).
74. Tihomirova I.N., Makarov A.V. Mechanical activation of lime-quartz binders. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 4–7. (In Russian).
75. Tihomirova I.N., Makarov A.V. The mechanism of phase formation and hardening of mechanically activated lime-quartz mixtures during steam treatment. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 44–49. (In Russian).
76. Urhanova L.A., Tanganov B.B. Chemical activation of lime-silica binders. Tekhnika i tekhnologiya silikatov. 2011. Vol. 18. No. 3, pp. 20–24. (In Russian).
77. Urhanova L.A. Improving the efficiency of production of silicate materials and products using mechanochemical activation of lime-silica binders. Tekhnika i tekhnologiya silikatov. 2011. Vol. 18. No. 2, pp. 2–6. (In Russian).
78. Walczaka P., Szyman´ski P., Róz.ycka A. Autoclaved Aerated Concrete based on fly ash in density 350 kg/m3 as an environmentally friendly material for energy – efficient constructions. Procedia Engineering. 2015. Vol. 122, pp. 39–46.
79. Yuan B., Straub C., Segers S., Yu Q.L., Brouwers H.J.H Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International. 2017. Vol. 43. Iss. 8, pp. 6039–6047.
80. Cai L., Li X., Ma B., Lv Y. Effect of binding materials on carbide slag based high utilization solid-wastes autoclaved aerated concrete (HUS-AAC): Slurry, physic-mechanical property and hydration products. Construction and Building Materials. 2018. Vol. 188, pp. 221–236.
81. Chen Y.-L., Ko M.-S., Chang J.-E., Lin C.-T. Recycling of desulfurization slag for the production of autoclaved aerated concrete. Construction and Building Materials. 2018. Vol. 158, pp. 132–140.
82. Li X. G., Liu Z. L., Lv Y., Cai L. X., Jiang D. B., Jiang W. G., Jian S.i Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Construction and Building Materials. 2018. Vol. 178, pp.175–182.
83. Ma B., Cai L., Li X., Jian S. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products. Journal of Cleaner Production. 2016. Vol. 127, pp. 162–171.
84. Huang X., Ni W., Cui W.-h., Wang Z.-j., Zhu L.-p. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Construction and Building Materials. 2012. Vol. 27, pp. 1–5.
85. Cai L., Ma B., Li X., Lv Y., Liu Z., Jian S. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness. Construction and Building Materials. 2016. Vol. 128, pp. 361–372.
86. Róz.ycka A., Pichór W. Effect of perlite waste addition on the properties of autoclaved aerated concrete. Construction and Building Materials. 2016. Vol. 120, pp. 65–71.
87. Song Y., Li B., Yang E.-H., Liu Y., Ding T. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement & Concrete Composites. 2015. Vol. 56, pp. 51–58.
88. Qin J., Cui C., Yang C., Cui X., Hu B., Huang J. Dewatering of waste lime mud and after calcining its applications in the autoclaved products. Journal of Cleaner Production. 2016. Vol. 113, pp. 355–364.
89. Liu Y., Leong B. S., Hu Z.-T., Yang E.-H. Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials. 2017. Vol. 148. Pр. 140–147.
90. Wan H., Hu Y., Liu G., Qu Y. Study on the structure and properties of autoclaved aerated concrete produced with the stone-sawing mud. Construction and Building Materials. 2018. Vol. 184, pp. 20–26.

For citation: Nelyubova V.V. Evolution of approaches to design of autoclave hardening materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 88–99. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-88-99 (In Russian).

Actual Problems of Building Material Science and Ways of Their Solution in Azerbaijan

Number of journal: №1-2-2019
Autors:

Sapacheva L.V.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-83-85
УДК: 691.3

 

AbstractAbout Authors
In October 2018, the Azerbaijan University of Architecture and Construction held the International Conference «Actual Problems in the Production of Building Materials and Ways to Solve Them». Over 100 leading scientists and engineers of higher educational institutions, research institutes, heads of construction enterprises of the Republic of Azerbaijan, as well as specialists from 5 foreign countries participated in the conference. The themes of the conference included a wide range of issues devoted to the problems of production of building materials; new technologies of building materials production; modern methods of the study of building materials; structure and properties of composite materials; safety and ecology in building materials production; design and development of building materials with the use of the newest developments in the nano-technology. The “Construction Materials” Journal was the information partner of the conference.
L.V. SAPACHEVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

«STROYMATERIALY» Advertising-Publishing Firm, OOO (9, structure 3, Dmitrovskoye Highway, Moscow, 127434, Russian Federation)

For citation: Sapacheva L.V. Current problems of construction materials science and way of their decision. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 83–85. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-83-85 (In Russian).

The Study of the Impact of Ultradisperse Metakaolin Additives on the Properties of Gypsum Binder

Number of journal: №1-2-2019
Autors:

Shirinzade I.N.
Bashirov E.H.
Kurbanova I.D.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-79-81
УДК: 666.914

 

AbstractAbout AuthorsReferences
The article is dedicated to improving properties of high strength gypsum binder. For this purpose was used high-reactivity metakaolin – HRM. First of all the characteristics of metakaolin – the degree and composition of the dispersion have been determined. As a result of the experiments it has been established that the addition of metakaolin significantly increases the mechanical strength of binding material consisting of gypsum and lime mixer (the metakaolin has increased by 30% relative to nonionic samples) and also has a positive effect on water permeability (water resistance factor from 0.4 to 0, Up to 69). These results were obtained during the use of metakaolin by 7% and 5% of the population. An increase in the water permeability of the material studied was also confirmed by X-ray analysis. It has been established that the metacaolin-specific amorphous structure is not observed in the diffractogram of the material prepared on the basis of this compound, and there are fewer intensity lines of new crystalline structures. It shows that all the metakaolin used was interacting with the other components (whith Ca(OH)2) and formed a new crystalline structure.
I.N. SHIRINZADE, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.H. BASHIROV, Candidate of Sciences (Engineering)
I.D. KURBANOVA, Engineer

Azerbaijani architectural and construction university (AZ 1073, Azerbaijan, Baku, A. Sultanova St., 5)

1. Fisher H.-B. Low-burnt calcium sulfate hemihydrate and water absorption. Zement I ego primenenie. 2005. No. 4, pp. 39–42. (In Russian).
2. Chernysheva N.V. The Use of Anthropogenic Raw Materials for Increase of Woter Resistance of a Composite Gypsum Binder. Stroitel,nye Materialy [Construction Materials]. 2014. No.7, pp. 53–56. (In Russian).
3. Shirinzade I. N. Fiziko-khimicheskie osnovy stroitel’nykh materialov [Physicochemical properties of building materials]. Baku. 2006. 278 p.
4. Kuznetsova T.V., Kudrashev I.V., Timashev V.V Fizicheskaya khimiya vyazhushchikh materialov [Physical chemistry of binding materials]. Мoscow: Vysshaya shkola, 1989. 384 p.
5. Goncharov Yu.A., Dubrovina G.G., Gubskaya A.G., Bur’yanov A.F. Gipsovye materialy i izdeliya novogo pokoleniya: otsenka energoeffektivnosti [Plaster materials and products of new generation: energy efficiency assessment]. Minsk: Kolovrat, 2016. 333 p.
6. Berdov G.I., Il’ina L.V., Zyryanova V.N., Nikonenko N.I., Sukharenko V.A. Influence of Mineral Microfillers on Building Materials Properties. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 79–83. (In Russian).
7. Khudyakova L.I., Voiloshnikov O.V., I.Yu. Influence of Mechanical Activation on Process of Formation and Properties of Composite Binding Materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 37–39. (In Russian).
8. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A., Buryanov A.F., Fisher H.-B. Activated fillers for gypsum and anhydrite mixes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 14–17. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-14-17 (In Russian).
9. Belov V.V., Petropavlovskaya V.B., Khramtsov N.V. Stroitel’nye materialy [Construction мaterials]. Moscow: ASV. 2014. 272 p.
10. Zhernovsky I.V., Kozhukhova N.I., Cherevatova A.V., Rakhimbaev I.Sh., Zhernovskaya I.V. New data about nano-sized phase formation in binding system «gypsum — lime». Stroitel’nye Materialy [Construction Materials]. 2016. No.7, pp. 9–12. (In Russian).
11. Fedulov A.A. Tekhnologiya gipsovykh otdelochnykh materialov i izdelii [Technology of gypsum finishing materials and products]. Moscow: RIF «STROIMATERIALY». 2018. 240 p.
12. Garkavi M.S., Fisher H.-B., Burianov A.F. Features of crystallization of gypsum dihydrate in the course of artificial aging of gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 73–75. (In Russian).
13. Petropavlovskij K.S., Novichenkova T.B. Effect of modifying additives on the structure formation of self-reinforced gypsum composites. V International seminar-competition of young scientists and post-graduate students working in the field of binders, concretes and dry mixes: collection of reports. Saint Petersburg. 2015, pp. 112–119. (In Russian).
14. Morozova N.N., Kuznetsova G.V., Maysuradze N.V., Akhtariev R.R., Abdrashitova L.R., Nizamutdinova E.R. Research in the activity of a pozzolanic component and superplasticizer for gypsum cement pozzolanic binder of white colour (GCPB). Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 26–30. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-26-30 (In Russian).
15. Khozin V.G., Morozova N.N., Sagdatullin D.G. Highstrength composite plaster knitting for constructional concrete. 2. Weimar Gypsum Conference. Weimar. 2014, pp. 225–322.
16. Manushina A.S., Akhmetzhanov A.M., Potapova E N. Influence of additives on properties of gypsum cement pozzolanic binder. Uspekhi v khimii i khimicheskoy tekhnologii. 2015. Vol. XXIX. No. 7, pp. 59-61. (In Russian).
17. Belov V.V., Obraztsov I.V. The use of virtual simulators for employees of industrial laboratories. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pр. 64–67. (In Russian).

For citation: Shirinzade I.N., Bashirov E.H., Kurbanova I.D. The study of the impact of ultradisperse metakaolin additives on the properties of gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 79–81. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-79-81 (In Russian).

Practice of Strengthening the Loaded Slope

Number of journal: №1-2-2019
Autors:

Sokolov N.S.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-70-78
УДК: 624.154.5

 

AbstractAbout AuthorsReferences
Currently, the development of urban areas, which were previously considered as unpromising and unsuitable for construction, is becoming particularly relevant. As a rule, these territories represent, from the point of view of topography, construction sites crossed by ravines, and from the point of view of engineering-geological conditions – the alternating soils of various genesis with participation of subsiding biogenic and man-made soils. These circumstances impose increased requirements for the design of facilities, taking into account the development of measures to ensure the safe operation of existing buildings and structures, as well as the stability of the slopes themselves. Besides, to the technology of construction production for the construction of buried structures and above-foundation structures special conditions must be applied. The algorithm of design and construction of embedded retaining structures is presented. The technology of construction of piles with the indication of properties of the used materials is described.
N.S. SOKOLOV1,2, Candidate of Sciences (Engineering), Associate Professor, Director (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 OOO NPF «FORST» (109a, ul. Kalinina, 428000, Cheboksary, Russian Federation)
2 Federal State-Funded Educational Institution of Higher Education «I.N. Ulianov Chuvash State University» (15, Moskovskiy pr., 428015, Cheboksary, Russian Federation)

1. Ilyichev V.A., Mangushev R.A., Nikiforova N.S. Experience of development of under-ground space of policies Russian mega. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 2, рр. 17–20. (In Russian).
2. Ulitsky V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical maintenance of development of the cities]. Saint Petersburg: Georekonstruktsia, 2010. 551 p.
3. Тer-Martirosyan Z.G. Mekhanika gruntov [Mekhanik of soil]. Moscow: ASV, 2009. 550 p.
4. Ulitsky V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical maintenance of development of the cities]. Saint Petersburg: Georekonstruktisia, 2010. 551 p.
5. Sokolov N.S. Sokolov S.N. Uning continuous flight augering piles for securing slopes. Materials of 5th All-Russian conference “New in architecture, design of building structures and reconstruction”, 2005. Cheboksary: CHGU, 2005. pp. 292–293. (In Russian).
6. Sokolov N.S. The method of continuous flight augering piles carrying capacity calculation which are made by using discharging of current pulses. Materials of 8th All-Russian (2nd International) conference “New in architecture, design of building structures and reconstruction”. Cheboksary: CHGU, 2014, pp. 407–411,
7. Sokolov N.S., Ryabinov V.M. About one method of calculation of the bearing capability the buroinjektsi-onnykh svay-ERT. Osnovaniya, fundamenty i mekhanika gruntov. 2015. No. 1, pp. 10–13. (In Russian).
8. Sokolov N.S., Ryabinov V.M. About effectiveness of the appliance of continuous flight augering piles with multiple caps using electric-discharge technology. Geotehnika. 2016. No.2, pp. 28–34. (In Russian).
9. Sokolov N.S., Ryabinov V.M. Special aspects of the appliance and the calculation of continuous flight augering piles with multiple caps. Geotehnika. 2016. No. 3, pp. 60–66. (In Russian)
10. Sokolov N.S., Ryabinov V.M. The technology of appliance of continuous flight augering piles with increased bearing capacity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 9, pp. 11–14. (In Russian).
11. Sokolov N.S. Criteria of economic efficiency of use of drilled piles. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 5, pp 34–38. (In Russian).

For citation: Sokolov N.S. Practice of Strengthening the Loaded Slope. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 70–78. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-70-78 (In Russian).

Some Results of Testing Anchoring Devices Used in Composite Reinforcement Tensioning

Number of journal: №1-2-2019
Autors:

Abramov I.V.
Turygin Yu.V.
Lekomtsev P.V.
Romanov A.V.
Buchkin A.V.
Saidova Z.S.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-64-69
УДК: 691.328.4

 

AbstractAbout AuthorsReferences
This article presents an analysis of existing devices for tensioning composite polymer reinforcement. It is shown that application of anchoring devices is gaining wider popularity due to the simplicity of design and technology of rebar fixation. The carrying capacity of such devices is significantly affected by the material of the anchor wedges, the strength of the anchoring (pre-pressing) of the wedges, and the technology of rebar manufacturing. The conducted research includes experimental study of the load capacity of an anchor-type device for tensioning glass-composite reinforcement of three different profiles in the stress state in the range from 40 to 70 percent of tensile strength. The method of testing, criteria for carrying capacity evaluation, as well as established influence patterns of the anchor wedges prepressing on the rebar slippage were described. It was found that each diameter of the reinforcement and type of profile requires its own dependencies to assign fixing forces that provide the required tension of the reinforcement in prestressed concrete products. The recommended technical characteristics were established for the developed anchoring device. They include preliminary fixing parameters for the ends of three different types of reinforcement profiles with a diameter of 8 mm, while maintaining the required strength of the reinforcing bar and preventing slipping in the device under the action of tensile loads, specified according to SP 295.1325800.201.
I.V. ABRAMOV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
Yu.V. TURYGIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
P.V. LEKOMTSEV1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. ROMANOV1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. BUCHKIN2, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
Z.S. SAIDOVA1, Master, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
2 Research Institute of Concrete and Reinforced Concrete named after A.A. Gvozdev (NIIZHB), JSC “Research Center of Construction” (6, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Patent RF 73351U1. Ankernoe ustroistvo dlya armatury periodicheskogo profilya. [Anchor device for reinforcement of a periodic profile]. Tkachev S.N., Volkov Yu.P., Pozdeev S.P. Declared 09.01.2008. Published 20.05.2008. Bulletin No. 14. (In Russian).
2. Patent RF 159663U1. Gil’za dlya uderzhivaniya prutka kompozitnoi armatury, vyryvaemogo iz betona. [Sleeve for holding the rod of composite reinforcement torn out of concrete]. Shchepochkina Yu.A., Rumyantseva V.E., Konovalova V.S., Karavaev I.V. Declared 08.07.2015. Published 20.02.2016. Bulletin No. 5. (In Russian).
3. Patent RF 176344U1. Element soedinitel’nyi s nakonechnikom. [Element connecting with a tip]. Soplyachenko V.N., Rogozhin O.G., Gilman A.B., Schneider M.G. Declared 28.03.2017. Published 17.01.2018. Bulletin No. 2. (In Russian).
4. Patent RF 176504U1. Ankernoe ustroistvo dlya fiksatsii predvaritel’no-napryazhennykh armaturnykh sterzhnei. [Anchor device for fixing pre-stressed reinforcing bars]. Umarov B.Sh., Piskunov A.A., Zinnurov T.A., Safiyulina L.G., Petropavlovskikh O.K., Voltaire A.R. Declared 04.07.2016. Published 22.01.2018. Bulletin No. 3. (In Russian).
5. Patent RF 2615555C1. Anker dlya kompozitsionnogo armaturnogo elementa. [Anchor for composite reinforcing element]. Nikolaev V.N. Declared 02.02.2016. Published 05.04.2017. Bulletin No. 10. (In Russian).
6. Patent RF 2639337C1. Anker dlya kompozitsionnogo armaturnogo elementa. [Anchor for composite reinforcing element]. Nikolaev V.N. Declared 20.09.2016. Published 21.12.2017. Bulletin No. 36. (In Russian).
7. Patent RF 168979U1. Anker dlya zakrepleniya silovogo elementa iz kompozitsionnogo materiala. [Anchor for fastening the force element from a composite material]. Vinogradov A.B., Levin Yu.K.; Declared 12.09.2016. Published 01.03.2017. Bulletin No. 7. (In Russian).
8. Patent RF 2613370C1. Ustroistvo dlya ankerovki kompozitnoi armatury. [Device for anchoring of composite reinforcement]. Nakashidze B.V., Berezin P.B., Nakashidze D.G. Declared 26.10.2015. Published 16.03.2017. Bulletin No. 8. (In Russian).
9. Patent RF 5489 U2009.08.30. Ustroistvo dlya krepleniya kontsov stekloplastikovoi armatury. [A device for fixing the ends of fiberglass reinforcement]. Popok N.N., Shabanov D.N., Terentyev V.A., Sopikov I.Ya. Declared 03.02.2009. Published 30.08.2009. (In Russian).
10. Patent СN 104727487A. Composite CFRP (carbon fibre reinforced polymer) tendon anchoring system / Qinghua Han, Lichen Wang, Jie Xu, Yan Lu, Ying Xu. Declared 23.03.2015. Published 24.06.2015.
11. Patent US 4958961. Anchoring arrangement for a rodshaped tension member formed of fiber renforced composte material / Thomas Herbst, Dieter Jungwirt. Declared 10.10.1989. Published 25.09.1990.
12. Patent US 5437526A. Arrangement for anchoring a rod-shaped tension member of composite fiber material / Herbst Thomas, Bolmer Berthold, von Grolman Hartmut, Liigering Anton, Schnitzler Lorenz. Declared 18.12.1992. Published 01.08.1995.
13. Patent US 5713169A. Anchorage device for high performance fiber composite cables / Meier Urs, Meier Heinz, Kim Patrick. Declared 13.04.1995. Published 03.02.1998.
14. Patent RF 9358 U2013.08.30. [A device for fastening the ends of fiberglass reinforcement]. Shabanov D.N., Popok N.N., Nikitin A.A., Prokop A.A., Lavrinovich V.A. Declared 08.01.2013. Published 30.08.2013. (In Russian).
15. Lobanov D.S. Experimental studies of the deformation and strength properties of polymer composite materials and filler panels. Cand. Diss. (Engineering). Perm. 2015. 148 p. (In Russian).
16. Gizdatullin A.R. Features of the test and the nature of the destruction of polymer composite reinforcement. Inzhenerno-stroitel’nyi zhurnal. 2014. No. 3, pp. 40–47. (In Russian).
17. Stepanova V.F., Stepanov A.Yu., Zhirkov E.P. Armatura kompozitnaya polimernaya [Composite polymer reinforcement]. Moscow: DIA. 2013. 200 p.
18. PAUL Maschinenfabrik GmbH & Co. KG –Kreissägemaschinen und Spannbeton: Anchor Grips. URL: http://www.paul.eu/en/produkte/spannbeton-technik/spannverankerungen.html (Date of access 19.10.2018).
19. Al-Mayah A., Soudki K., Plumtree A. Mechanical behavior of CFRP rod anchors under tensile loading. Journal of composites for construction. 2001. No. 5 (2), pp. 128–135.
20. Grakhov V., Yakovlev G., Gordina A., Zakharov A., Saidova Z. Thermal analysis of glass-fiber reinforced polymer rebars. Engineering Structures And Technologies. 2017. No. 9 (3), pp. 142–147.
21. Bennitz A., Schmidt, J.W. Failure modes of prestressed CFRP rods in a wedge anchorage set-up. Advanced composites in construction 2009: Conference proceedings. 4th International Conference on Advanced Composites in Conctruction, Edinburgh. 2009. Vol. Fourth.
22. Patent US 6082063A. Restressing anchorage system for fiber reinforced plastic tendons / Shrive N.G. Declared 21.11.1996. Published 04.07.2000.
23. Al-Mayah A., Soudki K., Plumtree A. Effect of sandblasting on interfacial contact behavior of carbon-fiber-reinforced polymer-metal couples. Journal of composites for construction. 2005. No. 9 (4), pp. 289–295.
24. Pirayeh Gar S. Structural performance of a full-depth precast bridge deck system prestressed and reinforced with AFRP bars. PhD Diss. (Engineering) Texas. 2012. 237 p.
25. Al-Mayah A., Soudki K., Plumtree A. Novel anchor system for CFRP rod: finite-element and mathematical models. Journal of composites for construction. 2007. No. 11 (4), pp. 469–476.
26. Patent RF 109172U1. Ankernoe ustroistvo dlya kompozitnoi armatury. [Anchor device for composite reinforcement]. Nikolaev V.N., Nikolaev V.V. Declared 12.05.2011. Published 10.10.2011. Bulletin No. 28. (In Russian).

For citation: Abramov I.V., Turygin Yu.V., Lekomtsev P.V., Romanov A.V., Buchkin A.V., Saidova Z.S. Some results of testing anchoring devices used in composite reinforcement tensioning. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 64–69. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-64-69 (In Russian).

Selection of Optimal Methods for Determining the Strength of Concrete when Inspecting Buildings and Structures

Number of journal: №1-2-2019
Autors:

Parfenov A.A.
Sivakova O.A.
Gusar’O.A.
Balakireva V.V.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-60-63
УДК: 624.012.45

 

AbstractAbout AuthorsReferences
For a reliable assessment of the technical condition of the building and its concrete and reinforced concrete structures, it is important to know the actual strength of concrete. At the same time, it is necessary to determine this parameter with minimal material and time expenditures and with minimal damage to the tested structures. For compliance of test results with the requirements of the current regulatory documentation, the choice of the optimal method for determining the strength means the choice of a combination of direct and indirect methods for determining the strength. According to the results of the evaluation of the initial material costs for the purchase of devices and the results of the assessment of time spent on testing, the optimal combination of methods for determining the strength is the joint use of the separation method with chipping and ultrasonic method. The use of this combination of methods also makes it possible to obtain the results of concrete strength measurements with high reliability.
A.A. PARFENOV1, Engineer
O.A. SIVAKOVA1, Engineer
O.A. GUSAR’2, Bachelor
V.V. BALAKIREVA2, Bachelor

1 JSC “Design-Technological Bureau of Concrete and Reinforced Concrete” (JSC “KTB RC”) (Bldg. 15A, 6, 2-nd Institutskaya Street, Moscow, 109428, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Brigante M., Sumbatyan M.A. Acoustic methods in non-destructive testing of concrete: a review of foreign publications in the field of experimental research. Defektoskopiya. 2013. No. 2, pp. 52–67. (In Russian).
2. Nedavnii O.I., Smokotin A.V., Bogatyreva M.M., Protasova I.B. Experience of using the echo-pulse method for non-destructive testing of concrete bearing structures. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2015. No. 1 (48), pp. 140–147. (In Russian).
3. Davidyuk A.A., Rumayantsev I.M. Strength control of structures made of high-strength concrete at the stage of operation of high-rise buildings. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 63–66. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-63-66 (In Russian).
4. Gulunov A.V. Methods and means of nondestructive testing of concrete and reinforced concrete products. Stroitel’nye Materialy [Construction Materials]. 2002. No. 8, pp. 14–16. (In Russian).
5. Vlasov V.M., Donov A.V., Kondakov V.E., Bakanovichus N.S. The use of non-destructive methods of control in assessing the quality of concrete for testing cores. Gidrotekhnicheskoe stroitel’stvo. 2007. No. 2, pp. 11–22. (In Russian).
6. Bukin A.V., Patrakov A.N. Determination of concrete strength by methods of destructive and non-destructive testing. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. Stroitel’stvo i arkhitektura. 2010. No. 1, pp. 89–94. (In Russian).
7. Pavlov A.N. Non-destructive methods for monitoring the strength of concrete during the construction of monolithic buildings. Nauka, tekhnika i obrazovanie. 2015. No. 5 (11), pp. 47–49. (In Russian).
8. Kozlov A.V., Kozlov V.N. Development and current state of the methods of non-destructive testing and acoustic tomography of concrete. Defektoskopiya. 2015. No. 6, pp. 3–14. (In Russian).
9. Nesvetaev G.V., Kolleganov A.V., Kolleganov N.A. Features of non-destructive testing of concrete strength of operated reinforced concrete structures. Internet-zhurnal Naukovedenie. 2017. Vol. 9. No. 2, p. 100. (In Russian).
10. Yavorskii A.A., Martos V.V. Problems of ensuring the quality of monolithic construction objects. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 3, pp. 6–8. (In Russian).
11. GOST 28570–90. Concretes. Methods of strength evaluation on cores drilled from structures. (In Russian).
12. GOST 22690–2015. Concretes. Determination of strength by mechanical methods of nondestructive testing. (In Russian).
13. GOST 17624–2012. Concretes. Ultrasonic method of strength determination. (In Russian).
14. GOST 18105–2010. Concretes. Rules for control and assessment of strength. (In Russian).
15. Ulybin A.V. On the choice of concrete strength inspection methods of ready-built structures. Magazine of Civil Engineering. 2011. No. 4 (22), pp. 10–15. (In Russian).
16. SP 13-102–2003. Regulations for inspection the structures of buildings and erections. Moscow: Gosstroy of Russia, GUP TsPP, 2004. (In Russian).
17. Zubkov V.A. Opredelenie prochnosti betona. [Determination of concrete strength]. Moscow: ASV. 1998. 120 p.

For citation: Parfenov A.A., Sivakova O.A., Gusar’O.A., Balakireva V.V. Selection of optimal methods for determining the strength of concrete when inspecting buildings and structures. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 60–63. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-60-63 (In Russian).

https://www.traditionrolex.com/10