Relaxation properties of terrace boards containing the combinated wood and mineral fillers

Number of journal: №3-2019
Autors:

Askadskii A.A.
Matseevich A.V.
Piminova K.S.
Gorbacheva O.A.
Matseevich T.A.
Kondrashchenko V.I.

DOI: https://doi.org/10.31659/0585-430X-2019-768-3-57-63
УДК: 674-419

 

AbstractAbout AuthorsReferences
The results of the study of stress relaxation of decking boards containing the combined wood and mineral filler are presented. Terraced boards with matrix polymer – polyvinyl chloride (PVC) were used. Wood flour (content 60%) was used as a wood filler, and chalk (CaCO3, content 40%) was used as a mineral filler. The optimal ratio of wood and mineral fillers was 60/40%. The stress relaxation during compression deformation of 3% and different temperatures in the range from 20 to 70°C was investigated. Also, experiments on stress relaxation at the temperature of 20°C and deformations from 2 to 5% were carried out in order to identify areas of linear and nonlinear relaxation behavior. The relaxation curves were approximated using the Boltzmann equation with relaxation cores T1(τ) and T2(τ). It was found that the calculated initial stress σ0 for the studied sample is in the range from 61.70 to 42.08 MPa with an increase in temperature from 20 to 70°C. At the same time, for a standard sample containing only wood filler, these indicators range from 44.1 to 40.63 MPa. Experimental stresses σ0.5, developing in 0.5 min, for the studied sample are in the range from 46.45 to 28.60 MPa with an increase in temperature from 20 to 70°C, and for a standard sample from 34.96 to 29.27 MPa. Experimental stresses σ180, developing in 180 minutes, for the studied sample are in the range from 31.82 to 15.43 MPa with an increase in temperature from 20 to 70°C, and for a standard sample – from 25.94 to 6.13 MPa. Consequently the addition of mineral filler to wood-polymer composite (WPC) increases the relaxing stresses, which can contribute to long-term mechanical performance.
A.A. ASKADSKII1, 2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. MATSEEVICH2, Junior Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
K.S. PIMINOVA2, Magistrant (This email address is being protected from spambots. You need JavaScript enabled to view it.)
O.A. GORBACHEVA1, Magistrant (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. KONDRASHCHENKO3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federetion)
3 Russian University of Transport (9, build 9, Obrazcova Street, Moscow, 127994, Russian Federation)

1. Moroz P.А., Аskadskii Аl.А., Matseevich T.А., Solov’eva E.V., Аskadskii А.А. Use of secondary polymers for production of wood and polymeric composites. Plasticheskie massy. 2017. No. 9–10, pp. 56–61. (In Russian).
2. Matseevich T.А., Аskadskii А.А. Mechanical properties of a terrace board on the basis of polyethylene, polypropylene and polyvinylchloride. Stroitel’stvo: nauka i obrazovanie. 2017. Vol. 7. No. 3 (24), pp. 48–59. (In Russian).
3. Аbushenko А.V., Voskobojnikov I.V., Kondratyuk V.А. Production of products from WPC. Delovoj zhurnal po derevoobrabotke. 2008. No. 4. pp. 88–94. (In Russian).
4. Ershova O.V., Chuprova L.V., Mullina E.R., Mishurina O.A. The study of the dependence of the properties of wood-polymer composites on the chemical composition of the matrix. Sovremennye problemy nauki i obrazovaniya. 2014. No. 2, pp. 26. https://www.science-education.ru/ru/article/view?id=12363. (Date of access 17.04.18). (In Russian).
5. Klesov А.А. Drevesno-polimernye kompozity [Wood and polymeric composites]. Saint Petersburg: Nauchnye osnovy i tekhnologii. 2010. 736 p.
6. Walcott М.Р., Englund К.A. A technology review of wood-plastic composites; 3ed. N.Y.: Reihold Publ. Corp., 1999. 151 p.
7. Rukovodstvo po razrabotke kompozitsij na osnove PVKH [The guide to development of compositions on the basis of PVC] / R.F. Grossman (ed.). Saint Petersburg: Nauchnye osnovy i tekhnologii. 2009. 608 p.
8. Kickelbick G. Introduction to hybrid materials // Hybrid Materials: Synthesis, Characterization, and Applications / G. Kickelbick (ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 498 p.
9. Uilki CH., Sammers Dzh., Daniels CH. Polivinilkhlorid [The polyvinylchloride] / G.E. Zaikov (ed.). Saint Petersburg: Professiya, 2007. 728 p.
10. Kokta B.V., Maldas D., Daneault C., Beland P. Composites of polyvinyl chloride-wood fibers. Рolymer-plastics Technology Engineering. 1990. Vol. 29, pp. 87–118.
11. Nizamov R.K. Polyvinylchloride compositions of construction appointment with multifunctional fillers. Doc. Diss. (Engineering). Kazan. 2007. 369 p. (In Russian).
12. Stavrov V.P., Spiglazov A.V., Sviridenok A.I. Rheological parameters of molding thermoplastic composites high-filled with wood particles. International Journal of Applied Mechanics and Engineering. 2007. Vol. 12. No. 2, pp. 527–536.
13. Burnashev A.I. The high-filled polyvinylchloride construction materials on the basis of the nano-modified wood floor. Cand. Diss. (Engineering). Kazan. 2011. 159 p. (In Russian).
14. Figovsky O., Borisov Yu., Beilin D. Nanostructured binder for acid-resisting building materials. Scientific Israel – Technological Advantages. 2012. Vol. 14. No. 1, pp. 7–12.
15. Hwang S.-W., Jung H.-H., Hyun S.-H., Ahn Y.-S. Effective preparation of crack-free silica aerogels via ambient drying. Journal of Sol-Gel Science and Technology. 2007. Vol. 41, pp. 139–146.
16. Pomogaylo A.D. Synthesis and intercalation chemistry of hybrid organo-inorganic nanocomposites. Vysokomolekulyarnye soedineniya. 2006. Vol. 48. No. 7, pp. 1317–1351. (In Russian).
17. Figovsky O.L., Beylin D.A., Ponomarev A.N. Progress of application of nanotechnologies in construction materials. Nanotekhnologii v stroitel’stve. 2012. No. 3, pp. 6–21. (In Russian).
18. Korolev E.V. The principle of realization of nanotechnology in construction materials science. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 60–64. (In Russian).
19. Abushenko A.B. Wood and polymeric composites: merge of two branches. Mebel’shhik. 2005. No. 3. pp. 32–36. (In Russian).
20. Abushenko A.V., Voskoboynikov I.V., Kondratyuk V. A. Production of products from WPC. Delovoj zhurnal po derevoobrabotke. 2008. No. 4, pp. 88–94. (In Russian).
21. Abushenko A.V. Extrusion of wood and polymeric composites. Mebel’shhik. 2005. No. 2, pp. 20–25. (In Russian).
22. Shkuro А.E., Glukhikh V.V., Mukhin N.M., etc. Influence of maintenance of a sevilen in a polymeric matrix on properties of wood and polymeric composites. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. No. 17. Vol. 15, pp. 92–95. (In Russian).
23. Askadskii A.A. New possible types of kernels of a relaxation. Mekhanika kompozitnih materialov. 1987. No. 3, pp. 403–409. (In Russian).
24. Askadskii A.A. Computational Materials Science of Polymers. Cambridge International Science Publishing. Cambridge. 2003. 695 p.
25. Askadskii A.A., Kondrashchenko V.I. Komp’yuternoe materialovedenie polimerov. Tom 1. Аtomno-molekulyarnyj uroven’ [Computer materials science of polymers. Volume 1. Atomic and molecular level]. Moscow: Nauchnyi mir. 1999. 534 p.
26. Askadskii A.A., Khokhlov A.R. Vvedenie v fiziko-khimiyu polimerov [Introduction to fiziko-chemistry of polymers]. Moscow: The scientific World. 2009. 380 p.
27. Askadskii A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya [Fiziko-himiya of polymeric materials and methods of their research]. Moscow: ASV. 2015. 408 p.
28. Askadskii A.A., Tishin S.A., Kazantseva V.V., Kovriga O.V. Loaf the mechanism of deformation of heatresistant aromatic polymers on the example of a poliimid. Vysokomolekulijarnie soedinenija. 1990. Ser. A. Vol. 32. No. 12, pp. 2437–2445. (In Russian).
29. Askadskii A.A., Tishin S.A., Tsapovetsky M.I., Kazantseva V.V., Kovriga O.V, Tishin V. A. The complex analysis of the mechanism of deformation and relaxation processes in a poliimida. Vysokomolekulijarnie soedinenija. 1992. Ser. A. Vol. 34. No. 1, pp. 62–72. (In Russian).
30. Gaylord R.J., Joss B., Bendler J.T., Di Marzio E.A. The Continuous-Time Random Walk Description of the Non-equilibrium Mechanical Response of Crosslinked Elastomers. Brit. Polymer Journal. 1985. Vol. 17. No. 2, pр. 126–128.
31. International scientific and technical conference polymeric composites and tribology (POLIKOMTRIB-2017). Theses of reports. Gomel, Belarus. June 27–30, 2017.
32. Askadskii A.A., Piminova K.S., Matseevich A.V. The relaxation properties of decking boards made from wood-polymer composites (WPC). Stroitel’nye Materialy [Construction Materials]. 2018. No. 6, pp. 45–52. DOI: https://doi.org/10.31659/0585-430X-2018-760-6-45-52. (In Russian).

For citation: Askadskii A.A., Matseevich A.V., Piminova K.S., Gorbacheva O.A., Matseevich T.A., Kondrashchenko V.I. Relaxation properties of terrace boards containing the combinated wood and mineral fillers. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 57–63. DOI: https://doi.org/10.31659/0585-430X-2019-768-3-57-63 (In Russian).


Print   Email