Calculation Scheme for Estimation of Rheological Properties of Polymers and Their Blends

Number of journal: №10-2018
Autors:

Askadskii A.A.
Matseevich T.A.
Kondrashchenko V.I.

DOI: https://doi.org/10.31659/0585-430X-2018-764-10-64-68
УДК: 691.175.5/8

AbstractAbout AuthorsReferences
The calculation scheme is proposed for the quantitative evaluation of the components of the complex shear modulus for polymers. Calculations are based on the chemical structure of a repeating unit for a linear polymer or a repeating fragment for a network polymer. The possibility of estimating the storage modules and losses modulus, as well as the mechanical loss tangent is shown. Good agreement was obtained between experimental and calculated data. The frequency dependences of the storage modulus in the high-frequency region are determined for mixtures of polyethylene oxide and polymethyl methacrylate, as well as for mixtures of polycarbonate with polystyrene. For these mixtures, the storage and loss modules are determined, as well as the mechanical loss factor at various temperatures, molecular masses and real frequencies of mechanical action. The equation is given for estimating the storage modulus at high frequencies for polymer blends. These characteristics are important for predicting the dynamic mechanical properties of building polymeric materials, especially the mechanical loss tangent, which are associated with noise absorption. The proposed calculation scheme makes it possible to predict the properties of building materials in the manufacture of mixtures of polymers with enhanced characteristics.
A.A. ASKADSKII1, 2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.A. MATSEEVICH2, Doctor of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. KONDRASHCHENKO3, Doctor of Sciences (engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (28, Vavilova Street, Moscow, 119991, Russian Federation)
3 Russian University of Transport (9, Obrazcova Street, Moscow, 127994, Russian Federation)

1. Raju V.R., Smith G.G., Marin G., Knox J.R., Graessley W.W. Properties of amorphous and crystallizable hydrocarbon polymers. I. Melt rheology of fractions of linear polyethylene. Journal of Polymer Science: Polymer Physics Edition. 1979. Vol. 17. Iss. 7, pp. 1183–1195.
2. Rochefort W.E., Smith G.G., Rachapudy H., Raju V.R., Graessley W.W. Properties of amorphous and crystallizable hydrocarbon polymers. II. Rheology of linear and star-branched polybutadiene Journal of Polymer Science: Polymer Physics Edition. 1979. Vol. 17. Iss. 7, pp. 1197–1210.
3. Виноградов Г.В., Малкин А.Я., Яновский Ю.Г., Борисенкова Е.К., Ярлыков Б.В., Бережная Г.В., Шаталов В.П., Шалганова В.Г., Юдин В.П. Вязкоупругие свойства и течение полибутадиенов и полиизопренов // Высокомолекулярные соединения. 1972. Т. 14A. № 11. С. 2425–2442.
3. Vinogradov G.V., Malkin A.Ya., Yanovskii Yu.G., Borisenkova E.K., Yarlykov B.V., Berezhnaya G.V., Shatalov V.P., Shalganova V.G., Yudin V.P. Viscoelastic properties and flow of polybutadienes and polyisoprenes. Vysokomolekulyarnye soedineniya. 1972. Vol. 14A. No. 11, pp. 2425–2442. (In Russian).
4. Seung-Yeop Kwak, Jeongsoo Choi, and Hee Jae Song. Viscoelastic relaxation and molecular mobility of hyperbranched poly(ε-caprolactone)s in their melt state. Chemistry of Materials. 2005. 17 (5), pp. 1148–1156. DOI: 10.1021/cm0487021.
5. Cattaleeya Pattamaprom, Ronald G. Larson, Anuvat Sirivat. Determining polymer molecular weight distributions from rheological properties using the dual-constraint model. Rheologica Acta. 2008. 47 (7), pp. 689–700. DOI: 10.1007/s00397-008-0264-5.
6. Raju V.R., Rachapudy H., Graessley W.W. Properties of amorphous and crystallizable hydrocarbon polymers. IV. Melt rheology of linear and star-branched hydrogenated polybutadiene. Journal of Polymer Science: Polymer Physics Edition. 1979. Vol. 17. Iss. 7, pp. 1223–1235.
7. Chenyang Liu, Jian Yu, Jiasong He, Wei Liu, Chunyan Sun, and Zhenhua Jing. A reexamination GN0 of and Me of syndiotactic polypropylenes with metallocene catalysts. Macromolecules. 2004. 37 (24), pp. 9279–9282. DOI: 10.1021/ma048743i.
8. Askadskii A.A. Computational materials science of polymers. Cambridge: Cambridge International Science Publishing. 2003. 695 р.
9. Аскадский А.А., Хохлов А.Р. Введение в физико-химию полимеров. М.: Научный мир, 2009. 380 с.
9. Askadskii A.A., Khokhlov A.R. Vvedenie v fiziko-khimiyu polimerov [Introduction to physico-chemistry of polymers]. Moscow: Nauchnoe slovo. 2009. 380 p.
10. Bicerano J. Prediction of Polymer Properties. New-York: Marcel Dekker Inc. 1996. 528 p.

For citation: Askadskii A.A., Matseevich T.A., Kondrashchenko V.I. Calculation scheme for estimation of the rheological properties of polymers and their blends. Stroitel’nye Materialy [Construction Materials]. 2018. No. 10, pp. 64–68. DOI: https://doi.org/10.31659/0585-430X-2018-764-10-64-68 (In Russian).


Print   Email