Efficiency of Modification of a Gypsum Binder with Carbon Nanotubes and Additives of Various Dispersity

Number of journal: 6-2015
Autors:

Tokarev Yu.V.
Ginchitsky E.O.
Yakovlev G.I.
Buryanov A.F.

DOI: https://doi.org/10.31659/0585-430X-2015-726-6-84-87
УДК: 691.553

 

AbstractAbout AuthorsReferences
The influence of one-layer carbon nanotubes (OCNT) with additives of different dispersity on physical-mechanical properties and structure of gypsum stone has been studied with the use of mechanical tests, IR spectral method and REM. OCNT in combination with additives of various nature and dispersity differently impacts on physical-mechanical characteristics of the gypsum binder. The best results with the formation of dense structure with a great number of crystalline hydrates are obtained when OCNT (0.002%) and Portland cement are used, this is confirmed by the IR-analysis and REM. An insignificant improvement of mechanical characteristics is reached when OCNT, microsilica, and metakaolin are used. Probably, it is connected with the irregularity of particles distribution in the gypsum matrix volume. It is necessary to note that when modifiers, introduced jointly or separately, are used, new formations that differ in shape and size from control samples are generated.
Yu.V. TOKAREV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.O. GINCHITSKY1, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.I. YAKOVLEV1, Doctor of Sciences (Engineering)
A.F. BURYANOV2, Doctor of Sciences (Engineering)

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, 426069, Izhevsk, Russian Federation)
2 Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, 129337, Moscow, Russian Federation)

1. Yakovlev G.I., Pervushin G.N., Korzheenko A., Bur’yanov A.F., etc. Applying multi-walled carbon nanotubes dispersions in producing autoclaved silicate cellular concrete. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 25–29. (In Russian).
2. Pavlеnko N.V., Bukhalo A.B., Strokova V.V., Nelubova V.V., Sumin A.V. Nanocrystalline components based modified binder for cellular composites. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 20–24. (In Russian).
3. Garkavi M.S., Nekrasova S.A., Troshkina E.A. Kinetics of contact formation in nano-modified gypsum materials Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 38–40. (In Russian).
4. Izryadnova O.V., Gordina A.F., Yakovlev G.I., Fisher H.-B. Regulation morphology crystalline structure of gypsum matrix and ultra nanodispersnymi additives. Izvestiya KGASU. 2014. No. 3, pp. 108–112. (In Russian).
5. Nurtdinov M.R., Solov’ev V.G, Bur’yanov A.F. Fine Concretes Modified with AlOOH and Al2O3 Nanofibers. Stroitel’nye Materialy [Construction Materials]. 2015. No. 2, pp. 68–71. (In Russian).
6. Khuzin A.F., Gabidullin M.G., Badertdinov I.R., etc. Complex additives based on carbon nanotubes for high-strength concrete accelerated hardening. Izvestiya KGASU. 2013. No. 1, pp. 221–226. (In Russian).
7. Inozemtsev A.S., Korolev E.V. Structuring and properties of the structural high-strength lightweight concretes with nanomodifier BisNanoActivus. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1, 2, pp. 33–37. (In Russian).
8. Khaliullin M.I., Rakhimov R.Z, Gaifullin A.R. Influence of complex builder on the composition, structure and properties of the artificial stone, based on composite gypsum binder. Izvestiya KGASU. 2014. No. 3, pp. 148–155. (In Russian).
9. Yakovlev G.I., Polyanskikh I.S. (Maeva), Tokarev Yu.V., Gordina A.F. Assessing the impact of ultrafine dust and carbon nanosystems on the structure and properties of gypsum binders. Intellektual’nye sistemy v proizvodstve. 2013. No. 1, pp. 185–188. (In Russian).

For citation: Tokarev Yu.V., Ginchitsky E.O., Yakovlev G.I., Buryanov A.F. Efficiency of Modification of a Gypsum Binder with Carbon Nanotubes and Additives of Various Dispersity. Stroitel’nye Materialy [Construction Materials]. 2015. No. 6, pp. 84-87. DOI: https://doi.org/10.31659/0585-430X-2015-726-6-84-87


Print   Email